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Direct Route to Thermodynamic Uncertainty Relations
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Thermodynamic uncertainty relations (TURs) bound the dissipation in non-equilibrium systems
from below by fluctuations of an observed current. Contrasting the elaborate techniques employed
in existing proofs, we here prove TURs directly from the Langevin equation. This establishes
the TUR as an inherent property of overdamped stochastic equations of motion. By including
current-density correlations we, moreover, derive a new sharpened TUR for transient dynamics.
Our arguably simplest and most direct proof allows us to systematically determine conditions under
which the different TURs saturate and thus allows for a more accurate thermodynamic inference.

A defining characteristic of non-equilibrium systems is
a non-vanishing entropy production [1–8] emerging dur-
ing relaxation [7–12], in the presence of time-dependent
(e.g. periodic [13–18]) driving, or in non-equilibrium
steady states (NESS) [19–26]. A detailed understanding
of the thermodynamics of systems far from equilibrium is
in particular required for unraveling the physical princi-
ples that sustain active, living matter [27–31]. Notwith-
standing its importance, the entropy production within
a non-equilibrium system beyond the linear response is
virtually impossible to quantify from experimental ob-
servations, as it requires detailed knowledge about all
dissipative degrees of freedom.
A recent and arguably the most relevant method to

infer a lower bound on the entropy production in an ex-
perimentally observed complex system is via the so-called
thermodynamic uncertainty relation (TUR) [25, 26, 32–
39], which relates the (time-accumulated) dissipation Σt

to fluctuations of a general time-integrated current Jt.
For overdamped systems in a NESS it reads [23, 24]

Σt

kBT
≥ 2

〈Jt〉2
var(Jt)

, (1)

with variance var(Jt) ≡ 〈J2
t 〉 − 〈Jt〉2 and thermal energy

kBT , which will henceforth be dropped for convenience
and replaced by the convention of energies measured in
units of kBT . The TUR may be seen as the natural
counterpart of the fluctuation-dissipation theorem [40]
or a more precise formulation of the second law [41]. No-
tably, it may also be interpreted as gauging the “thermo-
dynamic cost of precision” [42], and it was found to limit
the temporal extent of anomalous diffusion [43].
Since its original discovery [23] and proof [24] for sys-

tems in a NESS, a large number of more or less gen-
eral variants of the TUR were derived. In particular, for
paradigmatic overdamped dynamics and Markov-jump
processes, such generalized TURs have been found for
transient systems in absence [44–46] and presence of
time-dependent driving [17, 18]. Moreover, an extension
to state variables (which we will refer to as “densities”)
instead of currents has been formulated [18], and re-
cently correlations of densities and currents have been
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incorporated to significantly sharpen and even saturate
the inequality for steady-state systems [41]. Note, how-
ever, that the validity of the TUR is generally limited to
overdamped dynamics, as it was recently shown to break
down in systems with momenta [47].

Many different techniques have been employed to de-
rive TURs, including large deviation theory [24, 33, 40,
48, 49], bounds to the scaled cumulant generating func-
tion [18, 45, 50], as well as martingale [2] and Hilbert-
space [51] techniques. Most notably, the TUR has been
derived as a consequence of the generalized Cramér-Rao
inequality [46, 52] which is well known in information
theory and statistics. However, whilst providing valu-
able insight, the proof via the Cramér-Rao inequality in-
cludes quantifying the Fisher information of the Onsager-
Machlup path measure [52] and involves a dummy pa-
rameter that ’tilts’ the original dynamics. Thus, it may
not be faithfully considered as being direct. In fact, the
TUR and its generalizations seem to be an inherent prop-
erty of overdamped stochastic dynamics and are thus,
akin to quantum-mechanical uncertainty, expected to fol-
low directly from the equations of motion.

Here we show that no elaborated concepts beyond the
equations of motion are indeed required. Using only
stochastic calculus and the well known Cauchy-Schwarz
inequality we prove various existing TURs (including the
correlation-TUR [41]) for time-homogeneous overdamped
dynamics in continuous space directly from the Langevin
equation. Thereby we both, unify and simplify, proofs
of TURs. Moreover, we derive, for the first time, the
sharper correlation-TUR for transient dynamics without
explicit time-dependence. This improved TUR can be
saturated arbitrarily far from equilibrium for any initial
condition and duration of trajectories. Our simple proof
offers several advantages and we therefore believe that it
deserves attention even in cases that have already been
proven before. Most notably it enables immediate insight
into how one can saturate the various TURs and allows
for easy generalizations.

Setup.—We consider multidimensional time-
homogeneous overdamped dynamics (i.e. coefficients
do not explicitly depend on time) with (possibly)
multiplicative noise [53, 54] described by the thermo-
dynamically consistent [2, 26, 55] anti-Itô (or Hänggi-
Klimontovich [56, 57]) stochastic differential (Langevin)
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equation

dxτ = F(xτ )dτ + σ(xτ )⊛ dWτ , (2)

where ⊛ is the anti-Itô product [26, 55] and dWτ is
the increment of a multidimensional Wiener process with
zero mean 〈dWτ 〉 = 0 and covariance 〈dWτ,idWτ ′,j〉 =
δ(τ−τ ′)δijdτdτ

′. Due to the latter property, the noise in-
crement σ(xτ )dWτ is known as delta-correlated or white
noise. The noise amplitude is related to the diffusion co-
efficient via D(x) ≡ σ(x)σ(x)T /2. Let P (x, τ) be the
probability density to find xτ at a point x given some
initial condition P (x, 0). Then the instantaneous proba-
bility density current j(x, τ) is given by

j(x, τ) = [F(x) −D(x)∇]P (x, τ) , (3)

and the Fokker-Planck equation [54, 58] for the time-
evolution of P (x, τ) follows from Eq. (2) and reads [53]

∂τP (x, τ) = −∇ · j(x, τ) . (4)

In the special case that F(x) is sufficiently confining
a NESS is eventually reached with invariant denstity
Ps(x) ≡ P (x, τ → ∞) and steady-state current js(x) ≡
[F(x) −D(x)∇]Ps(x) with ∇ · js(x) = 0 [54]. The mean
total (medium plus system) entropy production in the
time interval [0, t] is given by [3, 4]

Σt =

∫
dx

∫ t

0

jT (x, τ)D−1(x)j(x, τ)

P (x, τ)
dτ . (5)

Let Jt be a generalized time-integrated current with some
vector-valued U(x, τ) defined via the Stratonovich inte-
gral

Jt ≡
∫ τ=t

τ=0

U(xτ , τ) · ◦dxτ . (6)

Note that for any integrand U this current and its first
two moments are readily obtained from measured trajec-
tories (xτ )0≤τ≤t. Therefore a TUR involving such Jt is
”operationally accessible”. For dynamics in Eq. (2) the
current may be equivalently written as the sum of Itô-
and dτ -integrals, Jt = J I

t + J II
t , with [26]

J I
t ≡

∫ τ=t

τ=0

U(xτ , τ) · σ(xτ )dWτ

J II
t ≡

∫ t

0

[
U(xτ , τ) · F(xτ ) +∇ · [D(xτ )U(xτ , τ)]

]
dτ

≡
∫ t

0

U(xτ , τ)dτ . (7)

By the zero-mean and independence properties of the
Wiener process 〈J I

t 〉 = 0 and thus 〈Jt〉 = 〈J II
t 〉 =∫ t

0 dτ
∫
dxU(x, τ)P (x, τ). Integrating by parts and using

Eq. (3) we obtain (see also [26])

〈Jt〉 =
∫ t

0

dτ

∫
dxU(x, τ) · j(x, τ) . (8)

The variance var(Jt) can in turn be computed from two-
point densities [25, 26, 59, 60], but is not required to
prove TURs.
We now outline our direct proof of TURs. First, we

re-derive the classical TUR Eq. (1) and its generaliza-
tion to transients [45], whereby we find a novel correc-
tion term that extends the validity of the transient TUR.
Next we prove the TUR for densities [18] and thereafter
the correlation-improved TUR [41], for the first time also
for non-stationary dynamics. Finally, we explain how to
saturate the various TURs. The proof relies solely on the
equation of motion Eq. (2) and implied Fokker-Planck
equation (4), which is why we call the proof “direct”.
Direct proof of TURs.—First, we require a scalar quan-

tity At with zero mean and whose second moment yields
the dissipation defined in Eq. (5), i.e. 〈A2

t 〉 = Σt/2 [61].
Considering the “delta-correlated” property of dWτ and
D = DT = σ(x)σ(x)T /2 leads to the “educated guess”

At ≡
∫ τ=t

τ=0

j(xτ , τ)

P (xτ , τ)
· [2D(xτ )]

−1
σ(xτ )dWτ , (9)

where At cannot be inferred from trajectories since
only dxτ but not dWτ is observed. Moreover, because
〈AtJ

I
t 〉 = 〈Jt〉 and 〈At〈Jt〉〉 = 〈At〉〈Jt〉 = 0 we have

〈At(Jt − 〈Jt〉)〉 = 〈Jt〉+ 〈AtJ
II
t 〉 , (10)

and the Cauchy-Schwarz inequality 〈At(Jt − 〈Jt〉)〉2 ≤
〈A2

t 〉var(Jt) further yields

Σt

2
var(Jt) ≥

[
〈Jt〉+ 〈AtJ

II
t 〉

]2
. (11)

Compared to Eq. (10) the inequality (11) has the ad-
vantage that var(Jt) is operationally accessible and Σt

(unlike At) has a clear physical interpretation.
To obtain the TUR we are left with evaluating 〈AtJ

II
t 〉,

which involves the two-time correlation of dWτ and dτ ′

integrals in Eq. (9) and Eq. (7), respectively. Therefore,
we must evaluate 〈g(xτ , τ) ·σ(xτ )dWτU(xτ ′ , τ ′)〉 where
g(xτ , τ) ≡ j(xτ , τ)·[2P (xτ , τ)D(xτ )]

−1. For times τ ≥ τ ′

this correlation vanishes due to the independence prop-
erty of the Wiener process. However, non-trivial correla-
tions occur for τ < τ ′ because the probability density of
xτ ′ depends on dWτ . Nevertheless, all necessary infor-
mation is contained in the equation of motion (2).
Following [26, 60], for a given point xτ = x we set

ε ≡ σ(x)dWτ = O(
√
dτ ) and write Eq. (2) in Itô form

as dxτ (x, τ, ε) = [F(x) + ∇ · D(x)]dτ + ε. The average
〈g(xτ , τ) ·εU(xτ ′ , τ ′)〉 is evaluated over the joint density
to be at points x,x + dxτ ,x

′ at times τ < τ + dτ < τ ′,
respectively, i.e. over P (ε)P (x′, τ ′|x + dxτ (x, τ, ε), τ +
dτ)P (x, τ) where P (ε) is Gaussian with zero mean and
covariance matrix 2D(x)dτ . Moreover, by expanding in
dτ we find [26, 60]

P (x′, τ ′|x+ dxτ (x, τ, ε), τ + dτ) = P (x′, τ ′|x, τ)+
dxτ (x, τ, ε) · ∇xP (x′, τ ′|x, τ) +O(dτ) . (12)
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By symmetry only the term of even power ∼ ε
2 in

εdxτ (x, τ, ε) · ∇xP (x′, τ ′|x, τ) survives the integration
over P (ε). Evaluating this integral, using the explicit
form of g(xτ , τ), and integrating by parts, we arrive at

〈AtJ
II
t 〉 =−

∫ t

0

dτ ′
∫
dx′U(x′, τ ′)

∫ t

0

dτ1τ<τ ′

∫
dx×

P (x′, τ ′|x, τ)∇x · j(x, τ). (13)

The above integral may be formulated as a general calcu-
lation rule (see [26, 60]) that can alternatively be derived
via Doob conditioning [2, 62, 63] as in [39].
For steady-state systems we have ∇ · j(x, τ) = ∇ ·

js(x) = 0 and due to Eq. (13) thus 〈AtJ
II
t 〉 = 0, such

that Eq. (11) immediately implies the original TUR in
Eq. (1).
To generalize to transients we use Eq. (4) ∇x ·j(x, τ) =

−∂τP (x, τ). An integration by parts in τ with the bound-
ary term −

∫
dxP (x′, τ ′|x, 0)P (x, 0) = −P (x′, τ ′) yields

〈AtJ
II
t 〉 =

∫ t

0

dτ ′
∫

dx′U(x′, τ ′)

(
− P (x′, τ ′)

−
∫

dx

∫ t

0

dτP (x, τ)∂τ [1τ<τ ′P (x′, τ ′|x, τ)]
)
. (14)

Note that the first line is −〈J II
t 〉. Since we consider

Markovian systems without explicit time-dependence of
F and σ, we have ∂τP (x′, τ ′|x, τ) = ∂τP (x′, τ ′ − τ |x) =
−∂τ ′P (x′, τ ′−τ |x) = −∂τ ′P (x′, τ ′|x, τ). Using moreover∫
dxP (x′, τ ′|x, τ)P (x, τ) = P (x′, τ ′) and

∫ t

0
dτ1τ<τ ′ =

τ ′ we obtain, upon integrating by parts with the bound-
ary term entering at τ ′ = t, and recalling 〈J II

t 〉 = 〈Jt〉,

〈AtJ
II
t 〉 = −〈J II

t 〉+
∫
dx′

∫ t

0

dτ ′U(x′, τ ′)∂τ ′ [τ ′P (x′, τ ′)]

= (t∂t − 1)〈Jt〉−
∫
dx′

∫ t

0

dτ ′P (x′, τ ′)τ ′∂τ ′U(x′, τ ′) . (15)

In order to make Eq. (15) operationally accessible we
define a second current

J̃t ≡
∫ τ=t

τ=0

τ∂τU(xτ , τ) · ◦dxτ , (16)

where 〈J̃t〉 is analogously to Eqs. (7) and (8) obtained
via τ∂τU such that Eq. (15) becomes

〈AtJ
II
t 〉 = (t∂t − 1)〈Jt〉 − 〈J̃t〉. (17)

Thus, we have expressed the correlation 〈AtJ
II
t 〉 in terms

of operationally accessible quantities. From this and
Eq. (11), the TUR for general initial conditions and gen-
eral time-homogeneous Langevin dynamics Eq. (2) reads

Σt var(Jt) ≥ 2
[
t∂t〈Jt〉 − 〈J̃t〉

]2
. (18)

The fact that the TUR for transient dynamics (18) fol-
lows from the original TUR (1) upon replacing 〈Jt〉 →

t∂t〈Jt〉 is well known [44, 46] and was first derived in con-
tinuous space in Ref. [45]. However, the correction term

〈J̃t〉 extends the validity of the TUR to currents with an
explicit time-dependence U(x, τ). We show below that
this additional freedom in choosing U is crucial for sat-
urating the transient TUR under general conditions. To

highlight that the correction term 〈J̃t〉 is strictly neces-
sary we provide an explicit counterexample against the
TUR in Eq. (18) without the correction term (see [64]).
We note that Eq. (18) in one-dimensional space and

for additive noise can be deduced from restricting the re-
sult in [18], where an explicit time-dependence was intro-
duced via a speed parameter v, to a time-homogeneous
drift, translated to time-integrated currents, and noting
that v∂vU(x, vτ) = τ∂τU(x, vτ). The form without the
speed parameter has the advantage that the correction

term 〈J̃t〉 is accessible from a single experiment while
the ∂v-correction requires perturbing the speed of the
experiment. However, the result in [18] even holds for an
explicitly time-dependent drift.
Notably, generalizing this proof to explicitly time-

dependent drift or diffusion, although probably possible,
is not straightforward because it requires perturbing the
dynamics (see [18]), and therefore all relevant informa-
tion is no longer contained in a single equation of motion.
TUR for densities.—We define general, operationally

accessible densities (the term ”density” is motivated by
the analogy to ”current” as e.g. in [25, 26, 59, 65])

ρt =

∫ t

0

V (xτ , τ)dτ ,

ρ̃t ≡
∫ τ=t

τ=0

τ∂τV (xτ , τ)dτ . (19)

Since in the proof above we did not use the explicit form
of U , the density can be treated analogously to Jt in
Eq. (7) by replacing U → V and omitting the J I

t -term.
Analogously to Eqs. (10) and (17) we thus obtain

〈At(ρt − 〈ρt〉)〉 = 〈Atρt〉 = (t∂t − 1)〈ρt〉 − 〈ρ̃t〉 ,

and analogously to Eq. (11) the transient density-TUR

Σtvar(ρt) ≥ 2 [(t∂t − 1)〈ρt〉 − 〈ρ̃t〉]2 . (20)

Note that due to the absence of the J I
t -term, the right-

hand side vanishes in steady-state systems. As in the
discussion of Eq. (18) above, Eq. (20) is in some sense
contained in the results of [18]. However, Eq. (20) allows
for multidimensional spaces and multiplicative noise, and
does not require a variation in protocol speed.
Improving TURs using correlations.—It has been re-

cently found [41] that the steady-state TUR can be emi-
nently improved, and even saturated arbitrarily far from
equilibrium, by considering correlations between currents
and densities as defined in Eq. (19). To re-derive this
sharper version we rewrite Eq. (11) for the observable
Jt − cρt (the constant c is in fact technically redundant
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since it can be absorbed in the definition of ρt)

Σt

2
var(Jt − cρt) ≥

[
〈Jt〉+ 〈At(J

II
t − cρt)〉

]2
. (21)

Note that var(Jt − cρt) = var(Jt) + c2var(ρt) −
2c cov(Jt, ρt), where cov denotes the covariance. Using
the optimal choice c = cov(Jt, ρt)/var(ρt) and recalling
that for steady-state systems 〈At(J

II
t −cρt)〉 = 0, Eq. (21)

becomes the NESS correlation-TUR in [41]

Σt var(Jt)
[
1− χ2

Jρ

]
≥ 2〈Jt〉2,

χ2
Jρ ≡ cov2(Jt, ρt)

var(Jt)var(ρt)
. (22)

Since χ2
Jρ ∈ [0, 1], Eq. (22) is sharper than Eq. (1) and, as

proven in [41] and discussed below, for any steady-state
system there exist Jt, ρt that saturate this inequality.
Our approach allows to generalize this result to tran-

sient dynamics by computing 〈At(J
II
t −cρt)〉 as in Eq. (17)

to obtain from Eq. (21) the generalized correlation-TUR

Σt var(Jt − cρt) ≥

2
(
t∂t〈Jt〉 − 〈J̃t〉 − c [(t∂t − 1)〈ρt〉 − 〈ρ̃t〉]

)2

. (23)

One could again optimize the left-hand side over c to ob-
tain var(Jt − cρt) = var(Jt)

[
1− χ2

Jρ

]
. However, since

here the right-hand side also involves c this may not
be the optimal choice. Thus, it is instead practical
to keep c general (or absorb it into ρt). The general-
ized correlation-TUR (23) represents a novel result that
sharpens the transient TUR in Eq. (18), and, as we show
below, even allows to generally saturate the TUR arbi-
trarily far from equilibrium.
Saturation of TURs.—For any choice U in the defini-

tion of Jt in Eq. (6), the TUR allows to infer a lower
bound on the time-accumulated dissipation Σt from 〈Jt〉
and var(Jt) [25, 26, 32–38]. The tighter the inequality,
the more precise is the lower bound on Σt. It is therefore
important to understand when the inequality becomes
tight or even saturates, i.e. gives equality.
Due to the simplicity and directness of our proof, we

can very well discuss the tightness of the bound based
on the step from Eq. (10) to Eq. (11) where we ap-
plied the Cauchy-Schwarz inequality 〈At(Jt − 〈Jt〉)〉2 ≤
〈A2

t 〉var(Jt) to the exact Eq. (10). Thus, the closer At

and Jt − 〈Jt〉 are to being linearly dependent [66], the
tighter the TUR, with saturation for Jt −〈Jt〉 = c′At for
some constant c′. Therefore, the TUR is expected to be
tightest for the choice U(x, τ) = c′[j(xτ , τ)/P (xτ , τ)] ·
[2D(xτ )]

−1 for which J I
t = c′At (see Eq. (7)). Note

that for NESS this U becomes time-independent with
js(x)/Ps(x). This choice is known to saturate the orig-
inal TUR in Eq. (1) in the near-equilibrium limit [2].
However, since the full Jt = J I

t + J II
t current cannot be

chosen to exactly agree with c′At, equality is generally
not reached.

The original TUR (1) with this choice of U(x, τ) was
also found to saturate in the short-time limit t → 0 [35,
36]. This result is in turn reproduced with our approach
by noting that J I

t = c′At and 〈AtJ
II
t 〉 = 0 give 〈At(Jt −

〈Jt〉)〉2 = 〈AtJ
I
t 〉2 = 〈A2

t 〉〈J I
t
2〉, and in the limit t → 0 the

integrals in Eq. (7) asymptotically scale like a single time-

step, such that 〈J I
t
2〉 ∼ (Wt − W0)

2 ∼ t dominates all

∼ t3/2, ∼ t2 contributions in var(Jt). In turn, 〈J I
t
2〉 t→0→

var(Jt) which yields 〈At(Jt − 〈Jt〉)〉2 t→0→ 〈A2
t 〉var(Jt).

Thus, the Cauchy-Schwarz step from the equality (10) to
the inequality (11) saturates as t → 0, in turn implying
that the TUR saturates.
More recently it was also found that including cor-

relations (see Eq. (22) and Ref. [41]) allows to satu-
rate a sharpened TUR for steady-state systems arbitrar-
ily far from equilibrium for any t, again for the same
choice U(x, τ) as above. Since our re-derivation of the
NESS correlation-TUR in Eq. (22) applied the Cauchy-
Schwarz inequality to At and Jt−cρt we see that choosing
cρt = J II

t yields Jt − cρt = J I
t = c′At, such that the

application of the Cauchy-Schwarz inequality becomes
an equality. That is, the correlation-TUR (22) for this
choice of Jt and ρt is generally saturated. Notably, this
powerful result follows very naturally from the direct
proof presented here.
Our generalization of the correlation-TUR in Eq. (23)

for transient systems even allows to saturate a TUR (ar-
bitrarily far from equilibrium for any t and) for general
initial conditions and general time-homogeneous dynam-
ics in Eq. (2). This result is strong but obvious, since as
for the NESS correlation-TUR we can choose Jt and ρt
such that Jt−cρt = c′At. Note that it is here crucial that
we allowed for an explicit time-dependence in U and V ,
i.e. that we found new correction terms (terms with tilde
in Eqs. (18),(20) and (23)).
Conclusion.—Using only stochastic calculus and the

well known Cauchy-Schwarz inequality we proved vari-
ous existing TURs directly from the Langevin equation.
This underscores the TUR as an inherent property of
overdamped stochastic equations of motion, analogous to
quantum-mechanical uncertainty relations. Moreover, by
including current-density correlations we derived a new
sharpened TUR for transient dynamics. Based on our
simple and more direct proof we were able to systemati-
cally explore conditions under which TURs saturate. The
new equality (10) is mathematically even stronger than
TUR (11). Therefore it allows to derive further bounds,
e.g. by applying Hölder’s instead of the Cauchy-Schwarz
inequality which, however, may not yield operationally
accessible quantities. Our approach may allow for gen-
eralizations to systems with time-dependent driving (see
e.g. [18]) which, however, are not expected to follow any-
more directly from a single equation of motion.
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Recall the definitions

Jt ≡
∫ τ=t

τ=0

U(xτ , τ) · ◦dxτ ,

J̃t ≡
∫ τ=t

τ=0

τ∂τU(xτ , τ) · ◦dxτ , (S1)

and the thermodynamic uncertainty relation (TUR) for transient/non-steady-state dynamics [Eq. (18) in the Letter],

2
[
t∂t〈Jt〉 − 〈J̃t〉

]2
≤ Σtvar(Jt) . (S2)

We here give an explicit example that would violate the above inequality if the correction term −〈J̃t〉 was missing, i.e.

we choose a process (xτ )0≤τ≤t and a function U(xτ , τ) for which for some parameters 2 [t∂t〈Jt〉]2 > Σtvar(Jt). This

shows that the correction term −〈J̃t〉 is indeed necessary, and that the result (S2) [Eq. (18) in the Letter] is valid for
a broader class of systems than existing literature [1] by allowing explicit time-dependence in U(xτ , τ).
Consider one-dimensional Brownian motion in a parabolic potential (i.e. a Langevin equation with linear force;

known as the Ornstein-Uhlenbeck process) [2] with a Gaussian initial condition x0 [we denote a a normal distribution
by N (mean, variance)],

dxτ = −axτdτ +
√
2DdWτ ,

x0 ∼ N (z, σ2
0). (S3)

Even though this process approaches an equilibrium steady-state, for finite times it features transient dynamics if
x0 is not sampled from the steady-state distribution. For any Gaussian initial condition this process is Gaussian [2].
Therefore, the mean and the variance completely determine the distribution of xτ . The mean, variance and covariance
are simply obtained as (see e.g. Appendix F in Ref. [3])

〈xτ 〉 = ze−aτ ,

var(xτ ) ≡ 〈x2
τ 〉 − 〈xτ 〉2 =

D

a

(
1− e−2aτ

)
+ σ2

0e
−2aτ ,

For τ ≥ τ ′ : cov(xτ , xτ ′) ≡ 〈xτxτ ′〉 − 〈xτ 〉〈xτ ′〉 = e−a(τ−τ ′)var(xτ ′). (S4)

The Gaussian probability density P (x, τ) given the initial condition in Eq. (S3) accordingly reads

P (x, τ) =

√
1

2πvar(xτ )
exp

[
− (x− ze−aτ)2

2var(xτ )

]
. (S5)

The local mean velocity ν(x, τ) ≡ j(x, τ)/P (x, τ) with current j(x, τ) ≡ (−ax−D∂x)P (x, τ) reads

ν(x, τ) = −ax+D(x − ze−aτ)/var(xτ ). (S6)

For this example we consider the simple case σ2
0 = D/a, i.e. we start in the steady-state variance (but as long as z 6= 0

not in the steady-state distribution), for which we obtain the simplified expressions

var(xτ ) = D/a,

For τ ≥ τ ′ : cov(xτ , xτ ′) = e−a(τ−τ ′)D/a,

ν(x, τ) = −aze−aτ . (S7)

For this initial condition, P (x, τ) corresponds to a Gaussian distribution of constant variance with mean value ze−aτ

drifting from z to 0. Since only the mean changes (but the distribution around the mean remains invariant), the local



2

mean velocity ν(x, τ) is independent of x [and in fact given by the velocity of the mean ν(x, τ) = ∂τ 〈xτ 〉]. This easily
allows to compute the time-accumulated dissipation

Σt = D−1

∫ t

0

dτ

∫
dx〈ν(xτ , τ)〉2 =

a2z2

D

∫ t

0

dτe−2aτ =
az2

2D
(1− e−2at). (S8)

To show that the inequality (S2) without the correction term can be violated, i.e. to find an example for which

2 [t∂t〈Jt〉]2 > Σtvar(Jt), we note [recalling Eq. (8) in the Letter, 〈Jt〉 =
∫ t

0 dτ
∫
dxU(x, τ) · j(x, τ)] that the term

t∂t〈Jt〉 = t
∫
dxU(x, t)·j(x, t) only involvesU(x, t) at the final time but not at any τ < t. In contrast, Σt is independent

of the choice of U and var(Jt) involves U(x, τ) at all times. Therefore, examples for 2 [t∂t〈Jt〉]2 > Σtvar(Jt) can be
found by making U(x, t) large compared to U(x, τ) at τ < t.
We now give an explicit example by choosing a linear time-dependence U(x, τ) = τ (here one-dimensional),

Jt ≡
∫ τ=t

τ=0

τ ◦ dxτ . (S9)

Note that due to ∂xU(x, τ) = 0 there is no difference between Stratonovich and Itô integration. We calculate

〈Jt〉 =
∫ t

0

τ〈−axτ 〉dτ = −az

∫ t

0

τe−aτdτ = −z

a

[
1− e−at(1 + at)

]
,

t∂t〈Jt〉 =
zt

a
[−a(1 + at) + a] e−at = −zat2e−at. (S10)

For the variance write

var(Jt) =
〈
[Jt − 〈Jt〉]2

〉
=

〈(∫ t

0

vτ
[
−a(xτ − 〈xτ 〉)dτ +

√
2DdWτ

])2
〉
. (S11)

Here, cross terms dτdWτ can be computed according to the ”Lemma” in Refs. [4, 5] or as outlined in the Letter in
Eqs. (12) and (13), but one then immediately sees that such terms vanish here due to ∂xDU(x, τ) = 0. Thus we get
(using cov from Eq. (S7))

var(Jt) = a2
∫ t

0

dτ

∫ t

0

dτ ′ ττ ′cov(xτ , xτ ′) + 2D

∫ t

0

dτ τ2

= 2D

(
t3

3
+

1

6a5
[
a2t2(2at− 3)− 6e−at(1 + at) + 6

])
. (S12)

Since the dissipation Σt does not depend on the choice of Jt, U , it is still given by Eq. (S8).
We now have evaluated all relevant expressions. Set a = D = z = 1 such that t is the only remaining parameter.

The TUR 2 [t∂t〈Jt〉]2 ≤ Σtvar(Jt) that would hold in the absence of explicit time-dependence in U [see Ref. [1]

or Eq. (S2) where J̃t = 0 in the absence of explicit time-dependence in U ], is now broken e.g. for t = 0.1 where

2 [t∂t〈Jt〉]2 = 1.6× 10−4 > Σtvar(Jt) = 6.3× 10−5. One also obtains a counterexample to 2 [t∂t〈Jt〉]2 ≤ Σtvar(Jt) by

taking the limit t → 0 since asymptotically 2 [t∂t〈Jt〉]2 t→0
= 2t4, Σt

t→0
= t and var(Jt)

t→0
= 2t3/3, i.e. 2 [t∂t〈Jt〉]2 t→0

=

Σtvar(Jt)/3. Thus, the inequality 2 [t∂t〈Jt〉]2 ≤ Σtvar(Jt) is violated by a factor of 3 for t → 0.

This example shows that the correction term −〈J̃t〉 in the TUR (S2) is necessary for general validity for currents
with explicitly time-dependent U.
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