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Abstract. The fluctuations of dynamical functionals such as the empirical
density and current as well as heat, work and generalized currents in stochastic
thermodynamics are often studied within the Feynman-Kac tilting formalism, which in
the physics literature is typically derived by some form of Kramers-Moyal expansion.
Here we derive the Feynman-Kac theory for general additive dynamical functionals
directly via Itô calculus and via functional calculus, where the latter approach in fact
appears to be new. Using Dyson series we then independently recapitulate recent
results on steady-state (co)variances of general additive dynamical functionals derived
in arXiv:2105.10483 and arXiv:2204.06553 directly from Itô calculus avoiding any tilting.
We hope for our work to put the different approaches to stochastic functionals employed
in the field on a common footing.

1. Introduction

Dynamical functionals such as local and occupation times, also known as the “empirical
density”, [1, 2, 3, 4, 5, 6, 7, 8, 9] as well as diverse time-integrated and time-averaged
currents [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] are central to “time-average
statistical mechanics” [24, 25, 26], large deviation theory (see e.g. [11, 14, 17, 18, 27]),
and path-wise, stochastic thermodynamics [28, 29, 30, 31, 32, 33, 20, 21]. Several
techniques are available for the study of dynamical functionals, presumably best known
is the Lie-Trotter-Kato formalism [2, 34] that was employed by Kac in his seminal
work [1]. The techniques typically employed in physics rely on an analogy to quantum
mechanical problems (see e.g. [7]) or assume some form of the Kramers-Moyal expansion
[5, 35, 36, 8, 37, 38, 39] (see also interesting generalizations to anomalous dynamics
[4, 9]).

In this technical paper we develop the Itô [40, 26] and functional calculus [41, 42]
approaches to Feynman-Kac theory in the hope to better connect the often disjoint
communities working on very similar problems. The outline of the paper is as follows.
In Sec. 2.1 we provide the mathematical setup of the problem. In Sec. 2.2 we derive the
Feynman-Kac equation for a general dynamical functional of diffusion processes using
Itô calculus. By generalizing the approach by Fox [41, 42] we derive in Sec. 2.3 the
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Feynman-Kac equation using functional calculus. In Sec. 3 we apply the formalism
to compute steady-state (co)variances of general dynamical functionals using a Dyson-
series approach. We conclude with a brief perspective.

2. Tilted Generator

2.1. Set-Up

We consider overdamped stochastic motion in d-dimensional space described by the
stochastic differential equation

dxt = F(xt)dτ + σdWt, (1)

where dWt is denotes increment of the Wiener process [40]. The corresponding diffusion
constant is D = σσT/2. For simplicity we stick to additive noise whereas all present
results generalize to multiplicative noise D(x) as described in [23]. In the physics
literature Eq. (1) is typically written in the form of a Langevin equation

ẋt = F(xt) + f(t), (2)

with white noise amplitude
〈
f(t)f(t′)T

〉
= 2Dδ(t − t′). Comparing the two equations,

f(t) corresponds to the derivative of Wt, which however (with probability one) is not
differentiable; more precisely, upon taking dt → 0 one has ||dWt/dt|| = ∞ with
probability one, which is why the mathematics literature prefers Eq. (1).

If one describes the system on the level of probability densities instead of
trajectories, the above equations translate to the Fokker-Planck equation ∂tG(x, t|x0) =

L̂(x)G(x, t|x0) with conditional density G(x, t|x0) to be at x at time t after starting in
x0 and the Fokker-Planck operator [43, 44]

L̂(x) = −∇x · F(x) +∇x ·D∇x = −∇x · ĵx, (3)

where we have defined the current operator ĵx ≡ F(x)−D∇x. Although the approach
presented here is more general, we restrict our attention to (possibly non-equilibrium)
steady states where the drift F(x) is sufficiently smooth and confining to assure the
existence of a steady-state (invariant) density ps(x) = limt→∞G(x, t|x0) and steady-
state current js(x) = ĵxps(x). The special case js(x) = 0 corresponds to equilibrium
steady states. For systems that eventually evolve into a steady state we can rewrite the
current operator as [23]

ĵx = js(x)p
−1
s (x)−Dps(x)∇xp

−1
s (x). (4)

We will later also restrict the treatment to systems evolving from steady-state initial
conditions, i.e. the initial condition xt=0 is drawn according to the density ps.
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We define the two fundamental additive dynamical functionals—time-integrated
current and density—as

Jt =

∫ τ=t

τ=0

U(xτ ) ◦ dxτ

ρt =

∫ t

0

V (xτ )dτ, (5)

with non-negative differentiable and square-integrable (real-valued) functions
U, V : Rd → R and ◦ denoting the Stratonovich integral. These objects depend on
the whole trajectory [xτ ]0≤τ≤t and are thus random functionals with non-trivial statis-
tics. In the following we will derive an equation for the characteristic function of the
joint distribution of xt, ρt,Jt via a Feynman-Kac approach which will then yield the
moments (including variances and correlations) via a Dyson series. The formalism was
already applied to the time-averaged density ρt/t (under the term of local/occupation
time fraction) [26, 45, 1]. To do so, we need to derive a tilted Fokker-Planck equation,
which we first do via Itô calculus and then, equivalently, via a functional calculus. Note
that the tilted generator can also be found in the literature on large deviation theory,
see e.g. [15].

2.2. Tilting via Itô’s Lemma

We first derive a tilted the Fokker-Planck equation using Itô calculus. From the Itô-
Stratonovich correction term dU(xτ )dxτ/2 and dxτdx

T
τ = 2Ddτ (where D = σσT/2)

we obtain from Eqs. (1) and (5) the increments (curly brackets {∇ . . . } throughout
denote that derivatives only act inside brackets)

dJτ = U(xτ ) ◦ dxτ = U(xτ )dxτ +D {∇U}(xτ )dτ
dρτ = V (xτ )dτ. (6)

We use Itô’s Lemma [40] in d dimensions for a test function f = f(xt, ρt,Jt) and Eqs. (1)
and (6), to obtain

df =
d∑
i=1

∂f

∂xi
dxit +

∂f

∂ρ
dρt +

d∑
i=1

∂f

∂Ji
dJ it

+
1

2

d∑
i,j=1

(
∂2f

∂xi∂xj
dxitdx

j
t +

∂2f

∂Ji∂Jj
dJ itdJ

j
t + 2

∂2f

∂xi∂Jj
dxitdJ

j
t

)
=[(∇xf) + (∇Jf)U(xt)][F(xt)dt+ σdWt] + (∇Jf)D{∇xU}(xt)dt+ V (xt)∂ρfdt

+
(
∇T

xD∇x + U(xt)
2∇T

JD∇J + 2U(xt)∇T
xD∇J

)
fdt. (7)

For the time derivative of f this gives
d

dt
f(xt, ρt,Jt) =

[(
F+ σ

dWt

dt

)
(∇x + U∇J) + {∇xU}D∇J

+ V ∂ρ +∇T
xD∇x + U2∇T

JD∇J + 2U∇T
xD∇J

]
f(xt, ρt,Jt). (8)
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Following this formalism, we move towards a tilted Fokker-Planck equation [1, 26].
Using the conditional probability density Qt(x, ρ,J|x0) we may write (omitting the x

dependence in F, U, V for brevity) the evolution equation for 〈f(xt, ρt,Jt)〉x0 , i.e. the
expected value of f(xt, ρt,Jt) over the ensemble of paths propagating between x0 and x

in time t. Using Eq. (8) and integrating by parts, we obtain

d

dt
〈f(xt, ρt,Jt)〉x0 =

∫
ddx

∫ ∞
0

dρ

∫
ddJf(x, ρ,J)∂tQt(x, ρ,J|x0)

=

∫
ddx

∫ ∞
0

dρ

∫
ddJ Qt(x, ρ,J|x0)[

F(∇x + U∇J) + {∇xU}D∇J + V ∂ρ +∇T
xD∇x + U2∇T

JD∇J + 2U∇T
xD∇J

]
f(x, ρ,J)

=

∫
ddx

∫ ∞
0

dρ

∫
ddJ f(x, ρ,J)

[
−∇xF− UF∇J − {∇xU}D∇J − V ∂ρ

+∇T
xD∇x + U2∇T

JD∇J + 2U∇T
xD∇J

]
Qt(x, ρ,J|x0). (9)

Since the test function f is an arbitrary twice differentiable function, the resulting tilted
Fokker-Planck equation reads

∂tQt(x, ρ,J|x0) = L̂x,ρ,JQt(x, ρ,J|x0), (10)

with the tilted Fokker-Planck operator (for discussion of the term V δ(ρ) entering at
ρ = 0 see [26])

L̂x,ρ,J =−∇x · F(x) +∇T
xD∇x − V (x)∂ρ − V (x)δ(ρ)− U(x)F(x) · ∇J

− {∇xU(x)}TD∇J + U(x)2∇T
JD∇J + 2∇T

JD∇xU(x)

=− [∇x + U(x)∇J]F(x)− V (x)∂ρ − V (x)δ(ρ)

+ [∇x + U(x)∇J]
T D [∇x + U(x)∇J] . (11)

We see that the ρ dependence enters in standard Feynman-Kac form [1, 26], whereas the
J dependence enters less trivially and shifts the gradient operator ∇x → ∇x +U(x)∇J.

2.3. Tilting via functional calculus

We now re-derive the tilted Fokker-Planck operator in Eq. (11) using a functional
calculus approach [41, 42] instead of the Itô calculus in the previous section. This
shows that both alternative approaches are equivalent, as expected. Note that there is
no need to work in discretized time (as opposed to [46]). We closely follow the derivation
of the Fokker-Planck equation in Ref. [41] but for d-dimensional space and we generalize
the approach to include the functionals defined in Eq. (5). The white noise term f(τ)

with
〈
f(τ)f(τ ′)T

〉
s
= 2Dδ(τ − τ ′) in the Langevin equation (2) can be considered to be

described by a path-probability measure [41]

P [f ] = N exp

[
−1

2

∫ t

0

f(τ)D−1f(τ)dτ

]
, (12)
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with normalization constant N which may be formally problematic but always cancels
out.

We now derive a tilted Fokker-Planck equation for the joint conditional density
Q of xt and the functionals Jt, ρt, as defined in Eq. (5), given a deterministic initial
condition x0 at time t = 0,

Q(x, ρ,J, t|x0) ≡
∫
DfP [f ]δ(x− xt)δ(ρ− ρt)δ(J− Jt). (13)

Note for the time derivatives that J̇t = U(xt)ẋt and ρ̇t = V (xt) to obtain (as a
generalization of the calculation in Ref. [41] to dynamical functionals)

∂tQ(x, ρ,J, t|x0) = ∂t

∫
DfP [f ]δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

∫
DfP [f ]

[
−∇x · ẋt − ∂ρρ̇t −∇J · J̇t

]
δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

∫
DfP [f ] [−∇x · [F(xt) + f(t)]− V (xt)∂ρ − U(xt) [F(xt) + f(t)]∇J]×

δ(x− xt)δ(ρ− ρt)δ(J− Jt)

= [−∇xF(x)− V (x)∂ρ − U(x)F(x)∇J]Q(x, ρ,J, t|x0)

− [∇x + U(x)∇J] ·
∫
DfP [f ]f(t)δ(x− xt)δ(ρ− ρt)δ(J− Jt). (14)

The functional derivative of Eq. (12) reads [41]

δP [f ]

δf(t)
= −1

2
D−1f(t)P [f ], (15)

which we use to obtain, via an integration by parts in δf(t),

−
∫
DfP [f ]f(t)δ(x− xt)δ(ρ− ρt)δ(J− Jt)

= 2D

∫
Df δP [f ]

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt)

= −2D
∫
DfP [f ] δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt). (16)

Note that
δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt) (17)

=

[
−∇x

δxt
δf(t)

− ∂ρ
δρt
δf(t)

−∇J
δxt
δf(t)

]
δ(x− xt)δ(ρ− ρt)δ(J− Jt), (18)

and we use that δρt/δf(t) = 0, and δxt/δf(t) = 1/2 [41] which implies δJt/δf(t) =

U(xt)1/2, to get

δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt) =

1

2
[−∇x − U(xt)∇J] δ(x− xt)δ(ρ− ρt)δ(J− Jt).

(19)
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Plugging Eq. (19) first into Eq. (16) and then into Eq. (14) yields the tilted Fokker-
Planck equation for the joint conditional density (with the −V (x)δ(ρ) term entering as
above and in [26])

∂tQ(x, ρ,J, t|x0) =
[
−∇xF(x)− V (x)∂ρ − V (x)δ(ρ)− U(x)F(x)∇J

+ [∇x + U(x)∇J]
T D [∇x + U(x)∇J]

]
Q(x, ρ,J, t|x0). (20)

Note that Eq. (20) fully agrees with Eq. (11) derived via Itô calculus thus establishing
the announced equivalence of the two approaches.

3. Steady-state covariance via Dyson expansion of the tilted propagator

We now derive the moments of the dynamical functionals Eq. (5) from a Dyson
expansion. First, let us consider a one-dimensional Laplace variable v and a d-
dimensional Fourier variable ω = (ω1, . . . , ωd) and Laplace and Fourier transform
Qt(x, ρ,J|x0) as

Q̃t(x, v,ω|x0) ≡
∫ ∞
0

dρ

∫
ddJ Qt(x, ρ,J|x0) exp (−vρ− iω · J) . (21)

Recall the Fokker-Planck operator L̂(x) = −∇x · ĵx with the current operator ĵx =

F(x) −D∇x from Eq. (3). The Fourier-Laplace transform of the tilted Fokker-Planck
operator in Eqs. (11) and (20) reads

L̂(x, v,ω) = L̂(x)− vV (x)− iωT · L̂U(x)− U(x)2ωTDω
L̂U(x) ≡ U(x)̂jx −D∇xU(x). (22)

Note that compared to the tilt of the density (i.e. the v-term; see also [26]), the tilt
corresponding to the current observable (ω-terms) involves more terms and even a term
that is second order in ω. The second order term occurs since (dWτ )

2 ∼ dτ and
therefore (in contrast to dτdWτ and dτ 2) contributes in the tilting of the generator.

We now restrict our attention to dynamics starting in the steady state ps and
denote the average over an ensemble over paths propagating from the steady state by
〈·〉s. Extensions of the formalism to any initial distribution are straightforward and
introduce additional transient terms. The moment generating function (also known as
characteristic function) reads

P̃ρJt (v,ω|ps) ≡
〈
e−vρt−iω·Jt

〉
s
= 1− v 〈ρt〉s − iω · 〈Jt〉s + ivω · 〈ρtJt〉s +O(ω2, v2). (23)

The Dyson expansion allows to expand the tilted generator as (also see [26])

eL̂(x1,v,ω)t =1 +

∫ t

0

dt1e
L̂(x1)(t−t1)

[
vV (x1) + iωT · L̂U(x1)

]
eL̂(x1)t1

+

∫ t

0

dt2

∫ t2

0

dt1e
L̂(x1)(t−t2)

[
vV (x1) + iωT · L̂U(x1)

]
eL̂(x1)(t2−t1)[

vV (x1) + iωT · L̂U(x1)
]
eL̂(x1)t1 +O(ω2, v2). (24)
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Using that the first propagation only differs from 1 by total derivatives (recall L̂(x) =
−∇x · ĵx), and using for the last propagation term eL̂(x1)t1ps(x1) = ps(x1), we obtain

P̃ρJt (v,ω|ps) =
∫

ddx1 e
L̂(x1,v,ω)tps(x1)

=1 +

∫
ddx1

∫ t

0

dt1

[
vV (x1) + iωT · L̂U(x1)

]
ps(x1)

+
d∑

l,m=1

∫
ddx1

∫ t

0

dt2

∫ t2

0

dt1

[
vV (x1) + iωT · L̂U(x1)

]
eL̂(x1)(t2−t1)

[
vV (x1) + iωT · L̂U(x1)

]
ps(x1) +O(ω2, v2). (25)

We replace the one-step propagation by the conditional density G(x2, t|x1) =

eL̂(x1)tδ(x2 − x1),∫
ddx1f(x1)e

L̂(x1)(t2−t1)g(x1) =

∫
ddx1

∫
ddx2f(x2)G(x2, t2 − t1|x1)g(x1), (26)

which yields

P̃ρJt (v,ω|ps) =1 +

∫
ddx1

∫ t

0

dt1

[
vV (x1) + iωT · L̂U(x1)

]
ps(x1)

+

∫
ddx1

∫
ddx2

∫ t

0

dt2

∫ t2

0

dt1

[
vV (x2) + iωT · L̂U(x2)

]
G(x2, t2 − t1|x1)

[
vV (x1) + iωT · L̂U(x1)

]
ps(x1) +O(ω2, v2). (27)

Comparing the definition and expansion of the characteristic function Eq. (23) with the
result Eq. (27) from the Dyson expansion, we obtain the moments and correlations of
the functionals Jt =

∫ τ=t
τ=0

U(xτ ) ◦ dxτ and ρt =
∫ t
0
V (xτ )dτ .

Note that the first moments (i.e. the mean values for steady-state initial conditions)
can also be obtained directly [23, 10] but we obtain them here by comparing Eqs. (23)
and Eq. (27),

〈ρt〉s =
∫ t

0

dt1

∫
ddx1V (x1)ps(x1) = t

∫
ddx1V (x1)ps(x1)

〈Jt〉s = t

∫
ddx1[U(x1)̂jx1 −D∇x1U(x1)]ps(x1) = t

∫
ddx1U(x1)js(x1), (28)

where ∇x1U(x1)ps(x1) vanishes after integration by parts and js(x1) ≡ ĵx1ps(x1) is the
steady-state current.

By comparing once more Eqs. (23) and Eq. (27) we have for the steady-state
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expectation 〈Jtρt〉s that

〈Jtρt〉s =
∫ t

0

dt2

∫ t2

0

dt1

∫
ddx1

∫
ddx2[

L̂U(x2)G(x2, t2 − t1|x1)V (x1) + V (x2)G(x2, t2 − t1|x1)LU(x1)
]
ps(x1)

=

∫ t

0

dt2

∫ t2

0

dt1

∫
ddx1

∫
ddx2

[
U(x2)̂jx2G(x2, t2 − t1|x1)V (x1)

+ V (x2)G(x2, t2 − t1|x1)[U(x1)̂jx1 −D∇x1U(x1)]
]
ps(x1). (29)

We note that for any function f the following identity holds∫ t

0

dt2

∫ t2

0

dt1f(t2 − t1) =
∫ t

0

dt′(t− t′)f(t′), (30)

and further introduce the shorthand notation

Îtxy[· · · ] =
∫ t

0

dt′(t− t′)
∫

ddx1

∫
ddx2U(x1)V (x2)[· · · ]. (31)

Moreover, we define Py(x, t) ≡ G(x, t|y)ps(y) and introduce the dual-reversed current
operator ĵ‡x ≡ js(x)/ps(x) +Dps(x)∇xp

−1
s (x) which corresponds to −ĵjs→−jsx [23]. With

these notations, performing an integration by parts, and by relabeling x1 ↔ x2 in one
term, we rewrite Eq. (29) to obtain for the correlation

〈Jtρt〉s − 〈Jt〉 〈ρt〉s =Î
t
xy

[̂
jx1Px2(x1, t

′) + js(x1)p
−1
s (x1)Px1(x2, t

′)

+Dps(x1)∇x1ps(x1)
−1Px1(x2, t

′)
]
− 〈Jt〉 〈ρt〉s

=Îtxy
[̂
jx1Px2(x1, t

′) + ĵ‡x1
Px1(x2, t

′)− 2js(x1)ps(x2)
]
. (32)

We will discuss this result below, but first derive analogous results for (co)variances of
densities and currents.

Instead of obtaining 〈ρ2t 〉s from the v2 order in Eq. (27) we here consider a
generalization to two densities, ρt =

∫ t
0
V (xτ )dτ and ρ′t =

∫ t
0
U(xτ )dτ . The Laplace-

transformed tilted generator in Eq. (22) with Laplace variables v, v′ corresponding to
ρt, ρ

′
t is obtained equivalently and gives L̂(x, v, v′) = L̂(x) − vV (x) − v′U(x). The

relative term in the Dyson series (by an adaption of Eq. (27) including v′U) becomes
[vV (x2) + v′U(x2)]G(x2, t2 − t1|x1)[vV (x1) + v′U(x1)]ps(x1) (see also [26]). From this
we obtain the known result [26, 1],

〈ρtρ′t〉s − 〈ρt〉s 〈ρ
′
t〉s = Î

t
xy[Px2(x1, t

′) + Px1(x2, t
′)− 2ps(x1)ps(x2)]. (33)

For U = V this becomes the variance of ρt.
To obtain the current covariance, we accordingly require a tilted generator with two

Fourier variables ω,ω′ corresponding to Jt =
∫ τ=t
τ=0

U(xτ )◦dxτ and J′t =
∫ τ=t
τ=0

V (xτ )◦dxτ ,
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which can, by the same formalism, be derived as

L̂(x,ω,ω′) =L̂(x)− iωT · L̂U(x)− iω′
T · L̂V (x)− U(x)2ωTDω − V (x)2ω′

T
Dω′

− 2U(x)V (x)ωTDω′

L̂V (x) ≡V (x)̂jx −D∇xV (x). (34)

The Dyson series (by adapting Eq. (27)) based on L̂(x,ω,ω′) for two currents J,J′

reads

P̃JJ′

t (ω,ω′|ps) = 1+∫
ddx1

∫ t

0

dt1

[
iωT · L̂U(x1) + iω′T · L̂V (x1) + 2U(x1)V (x1)ω

TDω′
]
ps(x1)

+

∫
ddx1

∫
ddx2

∫ t

0

dt2

∫ t2

0

dt1

[
iωT · L̂U(x2) + iω′T · L̂V (x2)

]
G(x2, t2 − t1|x1)

[
iωT · L̂U(x1) + iω′T · L̂V (x1)

]
ps(x1) +O(ω2, ω′2). (35)

The expectation value of the product of current components
〈
Jt,nJ

′
t,m

〉
s
is given by the

terms that are linear in ωnω′m, i.e. (recall Dnm = Dmn)〈
Jt,nJ

′
t,m

〉
s
= 2tDnm

∫
ddx1 U(x1)V (x1)ps(x1) +

∫ t

0

dt′(t− t′)
∫

ddx1

∫
ddx2[

L̂Un (x2)G(x2, t
′|x1) · L̂Vm(x1)ps(x1) + L̂Vm(x2)G(x2, t

′|x1) · L̂Un (x1)ps(x1)
]
. (36)

We denote by =̂ equality up to gradient terms that vanish upon integration to write

L̂Un (x2)G(x2, t
′|x1) · L̂Vm(x1)ps(x1)=̂U(x2)̂jx2,nG(x2, t

′|x1)×[
V (x1)js(x1)p

−1
s (x1)− ps(x1)D∇x1ps(x1)

−1 −D∇x1V (x1)
]
m
ps(x1)

=̂U(x2)V (x1)̂jx2,n[js(x1)p
−1
s (x1) + ps(x1)D∇x1p

−1
s (x1)]mG(x2, t

′|x1)ps(x1)

= U(x2)V (x1)̂jx2,nĵ
‡
x1,m

Px1(x2, t). (37)

Inserting this into Eq. (36), and relabeling in one term x1 ↔ x2 we obtain for the
nm-element of the current covariance matrix〈
Jt,nJ

′
t,m

〉
s
− 〈Jt,n〉s

〈
J ′t,m

〉
s
=2tDnm

∫
ddx1 U(x1)V (x1)ps(x1)

+ Îtxy
[̂
jx1,nĵ

‡
x2,m

Px2(x1, t
′) + ĵx2,m · ĵ‡x1,n

Px1(x2, t
′)
]
. (38)

This result for the current covariance matrix and Eq. (32) for the current-density
correlation are the natural generalizations of the density-density covariance Eq. (33),
as described in detail in Refs. [22, 23], with the additional 2tDnm-term in Eq. (38)
arising from the (dWτ )

2 contribution in Jt,nJ ′t,m. While the density-density covariance
Eq. (33) only depends on integration over all paths from x1 to x2 (and vice versa) in time
t′ via Px1(x2, t

′), the current-density correlation Eq. (32) instead involves ĵx1Px2(x1, t
′)
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and ĵ‡x1
Px1(x2, t

′) which describe currents at the final- and initial-points, respectively
[23]. This notion is further extended in the result Eq. (38) where ĵx2,mĵ

‡
x1,n

Px1(x2, t
′)

corresponds to products of components of displacements along individual trajectories
from x1 to x2 [22]. Together with the results in [22, 23] derived directly from Itô calculus
(thus avoiding Feynman-Kac tilting), the present results provide three independent but
equivalent general methods for studying the fluctuations and correlations of dynamical
functionals in Eq. (5).

4. Conclusion

We employed a Feynman-Kac approach to derive moments and correlations of dynamical
functionals of diffusive paths — the time-integrated densities and currents. We presented
two different but equivalent approaches to tilting the generator — Itô and functional
calculus. Our results place the different approaches to the statistics of dynamical
functionals employed in the field on a common footing, and we hope that they will
contribute to connecting the often virtually disjoint communities working on very
similar problems with distinct methods. Moreover, these results may have important
implications for large deviation theory and stochastic thermodynamics, in particular for
the physical and mathematical role of coarse graining as discussed in [22, 23].
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