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We present the conceptual and technical background required to describe and understand the
correlations and fluctuations of the empirical density and current of steady-state diffusion processes
on all time scales — observables central to statistical mechanics and thermodynamics on the level
of individual trajectories. We focus on the important and non-trivial effect of a spatial coarse
graining. Making use of a generalized time-reversal symmetry we provide deeper insight about the
physical meaning of fluctuations of the coarse-grained empirical density and current, and explain
why a systematic variation of the coarse-graining scale offers an efficient method to infer bounds on
a system’s dissipation. Moreover, we discuss emerging symmetries in the statistics of the empirical
density and current, and the statistics in the large deviations regime. More broadly our work
promotes the application of stochastic calculus as a powerful direct alternative to Feynman-Kac
theory and path-integral methods.

I. INTRODUCTION

A non-vanishing probability current [1–17] and entropy
production [18–27] are the hallmarks of non-equilibrium,
manifested as transients during relaxation [25–31] or in
non-equilibrium, current-carrying steady states [4–6, 32–
34]. Genuinely irreversible, detailed balance violating dy-
namics emerge in the presence of non-conservative forces
(e.g. shear or rotational flow) [35–38] or active driving in
living matter fueled by ATP-hydrolysis [16, 39–46]. Such
systems are typically small and “soft”, and thus subject
to large thermal fluctuations. Single-molecule [45–49]
and particle-tracking [50] experiments probe dynamical
processes on the level of individual, stochastic trajecto-
ries. These are typically analyzed within the framework
of “time-average statistical mechanics” [5, 50–56], i.e. by
averaging along individual finite realizations yielding ran-
dom quantities with nontrivial statistics.

Ergodic steady states are characterized by the (invari-
ant) steady-state density ps(x) and a steady-state prob-
ability current js(x) in systems with a broken detailed
balance. One can equivalently infer ps(x) and js(x) from
an ensemble of statistically independent trajectories of an
ergodic process, or from an individual but very long (i.e.
ergodically long [57]) trajectory. To infer ps(x) and js(x)
from individual sample paths one uses estimators that
are called the empirical density and empirical current,
respectively, defined as

ρUx (t) ≡ 1

t

∫ t

0

Uhx (xτ )dτ

JUx (t) ≡ 1

t

∫ τ=t

τ=0

Uhx (xτ ) ◦ dxτ , (1)

where Uhx (z) is a “window function” around a point x
with a characteristic scale h [58] and ◦ dxτ denotes the
Stratonovich integral, which both will be specified more
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precisely below. Notably, the Stratonovich integration
◦dxτ in Eq. (1) is the correct way to make sense of the
expression ”ẋτdτ”, which is ill-defined since for any τ
with probability one |ẋτ | =∞ for overdamped Langevin

dynamics [59]. Because (xτ )0≤τ≤t is random, ρUx (t) and

JUx (t) are fluctuating quantities. Notably, the empirical
density and current are typically defined with a delta
function, i.e. with Uh→0

x (z) = δ(x − z). For a variety of
reasons detailed in the accompanying letter [58] we here

define Uhx with a finite length scale h > 0, such that ρUx (t)
measures the time spent in the region Uhx around x and

JUx (t) the displacements in the region Uhx around x. Such
a definition is in line with that of generalized currents
in stochastic thermodynamics [5, 52–54] except that we
here consider vector-valued currents. Important recent
results on such generalized currents (however, without
the notion of coarse graining) may be found in [15, 55,
56, 60, 61].

The fluctuations of ρUx (t) and JUx (t) may be interpreted
as variances of fluctuating histograms. Namely, after
“binning” into (hyper)volumes around points x (or in our
language the coarse-graining around x), often carried out
on a grid, each individual trajectory yields a random his-
togram of occupation fractions or displacements. That is,
the height of bins in the histogram reflects the time spent
or displacement in said bin accumulated over all visits of

the trajectory until time t for ρUx (t) and JUx (t), respec-
tively, and is a fluctuating quantity due to the stochas-
ticity of trajectories. The variance of these fluctuations
quantifies the inference uncertainty. In Fig. 1 we show
such histograms inferred from individual trajectories of a
two-dimensional harmonically confined overdamped dif-
fusion in a rotational flow

dxt = −
[

1 −Ω
Ω 1

]
xdt+

√
2dWt, (2)

with Gaussian window

Uhx (z) =
1

2πh2
exp

[
− (z− x)2

2h2

]
. (3)
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For this process and window function we analytically
solved all spatial integrals [58] entering the results de-
rived below, and numerically evaluated one remaining
time-integral.

FIG. 1. (a) Two trajectories (gray) with length t = 5 in har-
monically confined rotational flow Eq. (2) with Ω = 5. The
steady-state density and current are depicted by the color
gradient and yellow arrows, respectively. (b) Height of bins
depict the time-averaged x-component of the current with
Gaussian coarse-graining window Eq. (3) with h = 0.3 eval-
uated for several points on the red line in (a) for the two
trajectories in (a). This corresponds to time-averaging all lo-
cal displacements (weighted by Uhx ) within a single trajectory.
(c) As in (b) but for the continuum of points on the red line
in (a). This can be considered as the x-component of the
current smoothened over a scale h. (d) Mean value 〈A〉s and

standard deviation
√

var(A) of A = JU(1,y)x
obtained from

our result Eq. (50). This represents the statistics of many
histograms as in (b). (e) As in (d) but for continuous y as
in (c). (f) Overlaying (d) and (e) shows that the histogram
picture is fully contained in the continuous coarse graining
procedure.

The interpretation of the coarse graining captured in or
induced by Uhx in Eq. (1) is flexible; it can represent a pro-
jection or a “generalized current” [5, 15, 52–56, 60, 61] or
may be thought of as a spatial smoothing of the empirical
current and density as shown in Fig. 1c,e and Fig. 2, also
for the case of a finite experimental resolution. Our main
focus here is the smoothing aspect in the context of un-
certainty of ps(x), js(x) and steady-state dissipation from
individual trajectories. Note that some form of coarse
graining or smoothing is in fact required in order for the

quantities in Eq. (1) to be well defined [58]. A suitable
smoothing decreases the uncertainty of the estimate and,
if varied over sufficiently many h and x (see also Fig. 1c,e)
instead of simply ”binning”, one does not necessarily lose
information (as compared to input data). Moreover, a
systematic variation of the scale h may reveal more in-

formation about ρUx (t) and JUx (t). The same reasoning
is found to apply to generalized thermodynamic currents
and allows for an improved inference of dissipation, see
[58] and below.

The present work is an extended exposé of the con-
ceptual and technical background that is required to un-
derstand and materialize the above observations. It ac-
companies the letter [58] but does not duplicate any in-
formation. Several additional explanations, illustrations
and applications are given here.

The article is structured as follows. In Sec. II we lay
out the theoretical background on stochastic differen-
tial equations in the Itô, Stratonovich and anti-Itô in-
terpretations and the corresponding equations for the
probability densities. We furthermore decompose the
drift and steady-state current into conservative and non-
conservative (i.e. irreversible) contributions and intro-
duce dissipation. In Sec. III we prove a generalize time-
reversal symmetry called “dual-reversal symmetry”. In
Sec. IV we derive our main results for the steady-state

(co)variances of ρUx (t) and JUx (t) and interpret them in
terms of initial- and end-point currents and increments.
In Sec. V we use current fluctuations to infer steady-state
dissipation via the Thermodynamic Uncertainty Relation
(TUR) [15, 34] with an emphasis on the importance of
the coarse-graining scale h. In particular we demonstrate
and explain the existence of a thermodynamically opti-
mal coarse graining. In Sec. VI we discuss symmetries
obeyed by the (co)variances and explain how the results
simplify in thermodynamic equilibrium. In Sec. VII we
present asymptotic results for short and long trajectories
and give results for large deviation theory. We conclude
with a summary and perspectives for the future.

II. THEORY

A. Set-up – overdamped Langevin dynamics

In this chapter we provide background on the equa-
tions of motion for the coordinate xτ highlighting the
differences between the Itô, Stratonovich, and anti-Itô
interpretations, and for their corresponding conditional
probability density functions of a transition x0 → x.

We consider time-homogeneous (i.e. coefficients do not
explicitly depend on time) overdamped Langevin dynam-
ics in d-dimensional space with (possibly) multiplicative
noise [62, 63] described by the thermodynamically con-
sistent [20, 64] anti-Itô (or Hänggi-Kilmontovich [65, 66])
stochastic differential equation

dxτ = F(xτ )dτ + σ(xτ ) ~ dWτ , (4)
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FIG. 2. (a) Coarse-graining windows (colors) in the form of an
indicator function of a rectangle centered at different points x
with coarse-graining scale h. For each x and h, each trajectory
(gray lines) gives rise to one value for the (coarse grained)
time-averaged density and current. Note that the choice of
x and h is flexible such that the windows may overlap. (b)
Same as (a) but with Gaussian coarse-graining windows. (c-d)
Coarse-graining windows in the case of trajectory data with
a finite experimental resolution (grid, gray trajectories). The
coarse graining scale h should be chosen large compared to the
resolution to obtain reliable approximations of the (coarse-
grained) densities and currents.

where dWτ is the increment of a d-dimensional Wiener
processes (i.e. white noise) with zero mean and covari-
ance 〈dWτ,idWτ ′,j〉 = δ(τ − τ ′)δijdτ . The noise ampli-
tude is related to the diffusion coefficient via D(x) ≡
σ(x)σ(x)T /2. We assume the drift field F(x) to be
smooth and sufficiently confining, such that the anti-Itô
(end-point) convention ~dWτ = Wτ −Wτ−dτ guar-
antees the existence of a steady-state probability den-
sity ps(x) = e−φ(x) and steady-state current js(x), and
yields Boltzmann-Gibbs (equilibrium) statistics when
D(x)−1F(x) = −∇φ(x) is a potential force.

The anti-Itô equation (4) can equivalently be rewritten
as an Itô equation with an adapted drift as,

dxt = F(xt)dt+ σ(xt) ~ dWt

= F(xt)dt+
[{
∇T
√

2D(xt)
}
dxt

]
· dWt

+
√

2D(xt)dWt

=
[
F(xt) +

{
∇TD

}
(xt)

]
dt+

√
2D(xt)dWt, (5)

where the brackets {·} throughout denote that the differ-

ential operator only acts within the bracket and
√

2D(xt)
represents the matrix σ(xt). At this point several re-
marks are in order. First, the anti-Itô interpretation
of the stochastic differential equation (4) as well as the

Stratonovich integral in Eq. (1) are both required for
thermodynamic consistency. Second, there is no differ-
ence between the interpretations of Eq. (4) if D(x) = D
is a constant matrix, i.e. the convention only matters
for multiplicative noise. However, even in this case the
Stratonovich integral in Eq. (1) is required for thermo-
dynamic consistency of the empirical current and to use
it as an estimator of js(x).

Since the process is ergodic the drift allows for a unique
decomposition into reversible Frev(x) = −D(x){∇φ}(x)
and irreversible Firrev(x) = p−1

s (x)js(x) parts that are
orthogonal, i.e. Frev(x) · Firrev(x) = 0 [26, 67]. This
implies that the steady-state density ps(x) is not altered
by Firrev(x) and the steady-state current lies tangentially
to hypersurfaces with constant ps(x), i.e. tangentially to
equipotential lines in the two-dimensional case.

The Fokker-Planck equation for the conditional prob-
ability density G(x, t|y) to be at a point x at time t after
starting at y that corresponds to Eqs. (4) and (5) reads

∂tG(x, t|y) = [−∇x · F(x) +∇TxD(x)∇x]G(x, t|y)

≡ L(x)G(x, t|y), (6)

which satisfies a continuity equation (∂t + ∇x ·
ĵx)G(x, t|y) = 0, where

ĵx ≡ F(x)−D(x)∇x. (7)

The decomposition of the drift translates to a decompo-

sition of ĵx into a gradient part ĵg(x) and steady-state-

current contributions, namely ĵx = Firrev(x) +Frev(x)−
D(x)∇x is rewritten using

ĵg(x) ≡ Frev(x)−D(x)∇
= D(x) {∇ log(ps(x)} −D(x)∇
= D(x)p−1

s (x) {∇ps(x)} −D(x)∇
= −D(x)

[
ps(x){∇p−1

s (x)} − ∇
]

= −D(x)ps(x)∇p−1
s (x), (8)

where we have used that {∇ps(x)−1} =
−p−2

s (x){∇ps}(x) implies {∇ps}(x) =
−p2

s (x){∇p−1
s }(x)). Thus we obtain

ĵx = ĵgx + p−1
s (x)js(x)

= −ps(x)D(x)∇xp
−1
s (x) + p−1

s (x)js(x), (9)

where js(x) ≡ ĵ(x)ps(x) (note that ĵg(x)ps(x) = 0).
Moreover, note that the steady-state two-point density
Py(x, t) ≡ G(x, t|y)ps(y) also satisfies the same Fokker-
Planck equation as G(x, t|y).

Finally, if the process is irreversible, i.e. Firrev(x) 6=
0 the steady state is dissipative with an average total
entropy production rate Σ̇ given by [21, 68]

Σ̇ =

∫
dxFirrev(x) ·D−1(x)Firrev(x)ps(x)

=

∫
dx

jTs (x)

ps(x)
D−1(x)js(x), (10)
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which can be obtained as the mean value of a sum over
steady-state expectations of the respective i-th compo-

nent of JUi
x (t) in Eq. (1) with Ui = (Firrev(x)TD−1(x))i.

Note that by adopting the Itô or Stratonovich conven-
tions instead of the anti-Itô convention in Eq. (4) one
obtains a different Fokker-Planck equation with a differ-
ent steady-state density. In particular, LIto(x) = −∇x ·
F(x) +

∑d
i,j=1 ∂i∂jDij(x) and LStrato(x) = L(x)/2 +

LIto(x)/2 = −∇x · F(x) +
∑d
i,j=1 ∂i

√
Dij(x)∂j

√
Dij(x)

and the respective steady-state densities pIto
s (x) and

pStrato
s (x) depend explicitly on D(x) and are there-

fore in general not thermodynamically consistent since
the steady state deviates from Gibbs-Boltzmann statis-
tics (e.g. in dimension one we have pIto

s (x) ∝
exp[−φ(x)]/D(x) and pStrato

s (x) ∝ exp[−φ(x)]/
√
D(x),

respectively, where the deviation from exp[−φ(x)] can-
not be absorbed in the normalization if D(x) depends on
x).

III. GENERALIZED TIME-REVERSAL
SYMMETRY

It will later prove useful to take into account a form
of generalized time-reversal symmetry obeyed by Eq. (4)
called “continuous time reversal” or “dual-reversal sym-
metry” [55, 69]. Analogous generalized symmetries were
also found in deterministic systems (see e.g. [70]). Gener-
alized time-reversal symmetry relates forward dynamics
in non-equilibrium steady states to time-reversed dynam-
ics in an ensemble with inverted irreversible steady-state
current, i.e. in an ensemble with Firrev → −Firrev or
equivalently js → −js. The dual-reversal symmetry for
the two-point probability densities states that

G(x, t|y)ps(y) = G−js(y, t|x)ps(x), (11)

or equivalently G−js(x, t|y)ps(y) = G(y, t|x)ps(x) where
G−js(y, t|x) is the conditional probability density of the
process with drift F−js(x) ≡ Frev(x) − Firrev(x) in-
stead of F(x) = Frev(x) + Firrev(x). At equilibrium,
i.e. js(x) = 0 (for all x), this symmetry simplifies to the
well known time-reversal symmetry called “detailed bal-
ance” condition for two-point densities. We here provide
an original and intuitive proof of Eq. (11) that proceeds
entirely in continuous space and time, based on the de-
composition of currents Eq. (9). The Fokker-Planck op-

erator L(x) = −∇x · ĵx, using the decomposition Eq. (9)
and multiplying by ps from the right side, reads

L(x)ps(x) = −∇x · js(x) +∇Tx ps(x)D(x)∇x. (12)

Taking the adjoint gives (since D = DT )

ps(x)L†(x) = [L(x)ps(x)]†

= js(x) · ∇x +∇Tx ps(x)D(x)∇x. (13)

Since for the steady state density Lps = 0, js is divergence
free {∇x · js(x)} = 0 and we have ∇x · js(x) = js(x) · ∇x.
Thus we see the symmetry under inversion js → −js

ps(x)L†(x) = L−js(x)ps(x). (14)

Under detailed balance js = 0, i.e. L−js = L,
and ps(x)L†(x) = L(x)ps(x) which implies the time-
reversal symmetry G(x, t|y)ps(y) = G(y, t|x)ps(x) [59,
63, 71]. Eq. (14) implies for all integers n ≥ 1 that
ps(x)[L†(x)]n = [L(x)−js ]n(x)ps(x), and consequently
for all t ≥ 0 that ps(x) exp[L†(x)t] = exp[L−js(x)t]ps(x).
Applying this operator equation to the initial condition
δ(y−x) and using ps(x)δ(y−x) = ps(y)δ(y−x) as well
as that L† propagates the initial condition as G(y, t|x) =
exp[L†(x)t]δ(y − x) while L−js propagates the final
point in the ensemble with js inverted G−js(x, t|y) =
exp[L−js(x)t]δ(y − x), we obtain the dual reversal sym-
metry in Eq. (11). This generalized time-reversal symme-
try relates the dynamics in the time-reversed ensemble to
the propagation in the ensemble with reversed current,
or equivalently, the forward dynamics to the propagation
with concurrent time and js-reversal. While at equilib-
rium (i.e. under detailed balance, js = 0) the forward
dynamics is indistinguishable from the time-reversed dy-
namics, the statement Eq. (11) (if generalized to all paths
(see e.g. [55]) means that forward dynamics (with js) is
indistinguishable from backwards/time-reversed dynam-
ics with reversed js → −js (i.e. js(x)→ −js(x) at all x).
We will later use this dual-reversal symmetry to under-
stand the fluctuations of observables that involve (time-
integrated) currents in non-equilibrium steady states.

IV. DERIVATION OF THE MAIN RESULTS,
INITIAL- AND FINAL-POINT CURRENTS AND
THEIR APPLICATION TO DENSITY-CURRENT

CORRELATIONS

A. Mean empirical density and current

Although the time-averaged density and current de-
fined in Eq. (1) are functionals with complicated statis-
tics, their mean values can be readily computed.
Throughout the paper we will assume steady-state ini-
tial conditions, i.e. initial conditions drawn from ps(x

′),
denoted by 〈·〉s. This renders mean values time-
independent and we have (see also [6])〈

ρUx (t)
〉

s
=

1

t

∫ t

0

dτ
〈
Uhx (xτ )

〉
s

=
1

t

∫ t

0

dτ

∫
dzUhx (z)ps(z)

=

∫
dzUhx (z)ps(z), (15)

and by rewriting the Stratonovich-integration ◦dxτ in
terms of Itô integration as Uhx (xτ ) ◦ dxτ = Uhx (xτ )dxτ +
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1
2dU

h
x (xτ )dxτ , where dxτdx

T
τ /2 = D(xτ )dτ and thus

dUhx (xτ )dxτ/2 = D(xτ ){∇Uhx}(xτ )dτ ,

〈
JUx (t)

〉
s

=
1

t

∫ t

0

〈
Uhx (xτ ) ◦ dxτ

〉
s

=
1

t

∫ τ=t

τ=0

〈
Uhx (xτ )dxτ

〉
s

+
1

t

∫ τ=t

τ=0

1

2

〈
dUhx (xτ )dxτ

〉
s

=
1

t

∫ t

0

dτ

∫
dzps(z)

[
Uhx (z)F(z) +

{
∇Tz D(z)

}
Uhx (z)

+ D(z)
{
∇zU

h
x (z)

} ]
+

1

t

∫ τ=t

τ=0

〈
Uhx (xτ )

√
2D(xτ )dWτ

〉
s
.

(16)

Note that the mean value involving dWτ vanishes since
this Itô-noise increment has zero mean and is uncor-
related with functions of xτ , i.e. 〈f(xτ )dWτ 〉 =
〈f(xτ )〉〈dWτ 〉 = 0. Integrating by parts and using that
D(z) = DT (z) is symmetric we get〈

JUx (t)
〉

s
=

∫
dzps(z)

[
Uhx (z)F(z) +∇Tz D(z)Uhx (z)

]
=

∫
dzUhx (z) [F(z)−D(z)∇z] ps(z)

=

∫
dzUhx (z)̂jzps(z) =

∫
dzUhx (z)js(z). (17)

Note that if we had defined Eq. (1) with an Itô integral
instead of the Stratonovich, we would miss the D(z)∇z-

term and would not get ĵz and thus js, not even for addi-
tive noise. The Stratonovich integral is therefore required
for consistency.

The interpretation of the steady-state mean values
in Eqs. (15) and (17) is immediate — the mean time-
averaged density and current are (at least for positive
normalized windows) the steady-state density ps and cur-
rent js averaged over the coarse-graining window function
Uhx .

B. (Co)variances of empirical density and current

Since fluctuations [5, 15, 34, 50–55] (and correla-
tions [56]) play a crucial role in time-average statisti-
cal mechanics and stochastic thermodynamics, we dis-
cuss (co)variances of coarse-grained time-averaged densi-
ties and currents (recall the interpretation of the variance
within the “fluctuating histogram” picture in Fig. 1).

To keep the notation tractable we introduce the inte-
gral operator

Ît,Uxy [ · ] ≡ 1

t2

∫ t

0

dt1

∫ t

t1

dt2

∫
dzUhx (z)

∫
dz′Uhy (z′)[ · ], (18)

with the convention
∫ t
t1
dt2δ(t2 − t1) = 1/2. Note that

other conventions would only change the appearance of

intermediate steps but not the final result. We define the
two-point steady-state covariance according to [58] as

Cxy
AB(t) ≡ 〈Ax(t)By(t)〉s − 〈Ax(t)〉s〈By(t)〉s , (19)

where A and B are henceforth either ρU or JU , respec-
tively. We refer to the case when A 6= B or x 6= y
as (linear) “correlations” and to the case A = B with
x = y as “fluctuations” whereby we adopt the conven-
tion varxA(t) ≡ Cxx

AA(t). Note that for simplicity and en-
hanced readability we only assume coarse-graining win-
dows Uhx and Uhy where only the center points x,y may
differ. All results equivalently hold for window functions
whose shape and h differs as well.

We now address correlations Cxy
ρρ of the coarse-grained

time-averaged density at points x and y, which corre-
sponds to the density variance when x = y. To do so,
first consider the (mixed) second moment〈
ρUx (t)ρUy (t)

〉
s

=

∫ t

0

dτ

∫ t

0

dτ ′
〈
Uhx (xτ )Uhy (x′τ )

〉
s
. (20)

The expectation value corresponds to an integration over
the two-point probability density to have xτ = z and
xτ ′ = z′ given by the two-point function Pz(z′, τ ′ − τ) ≡
G(z′, τ ′−τ |z)ps(z) for τ ′ > τ and Pz′(z, τ−τ ′) for τ ′ < τ .
We relabel the times τ, τ ′ as t1 < t2 and use the integral
operator in Eq. (18) to obtain〈
ρUx (t)ρUy (t)

〉
s

= Ît,Uxy [Pz(z′, t2 − t1) + Pz(z′, t2 − t1)] .

(21)

Since the argument only depends on time differences t′ =
t2 − t1 ≥ 0 the integral operator Eq. (18) simplifies to

Ît,Uxy [ · ] ≡ 1

t

∫ t

0

dt′
(

1− t′

t

)∫
dzUhx (z)

∫
dz′Uhy (z′)[ · ]. (22)

To obtain the correlation we subtract the mean values
(see Eq. (15)) which (noting that (1/t)

∫ t
0
dt′(1− t′/t) =

1/2) gives

Cxy
ρρ (t) = Ît,Uxy [Pz(z′, t′) + Pz′(z, t′)− 2ps(z)ps(z

′)] ,
(23)

which has been derived before [51, 72]. Eq. (23) simplifies
further for x = y as well as under detailed balance and
is also symmetric under js → −js, all of which will be
discussed in Sec. VI.

The interpretation of Eq. (23) (see also [51]) is that all
paths from z to z′ (i.e. from Uhx to Uhy ) and vice versa
from z′ to z, in time t′ = t2 − t1 contribute according
to their correlation to Cxy

ρρ (t). These contributions are
integrated over all possible time differences and pairs of
points within Uhx and Uhy , respectively.

We now explore the important effect of coarse graining
over the windows Uhx for the inference of ps(x) from noisy
individual trajectories. If one wants to reliably infer the
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(coarse-grained) steady-state density from ρUx (t) the rela-

tive error varρ/〈ρUx (t)〉2 should be small. We have shown

that limh→0 varρ/〈ρUx (t)〉2 =∞ [58] and Fig. 3 (blue line)

demonstrates that varρ/〈ρUx (t)〉2 decreases with increas-
ing h. However, such a decrease does not guarantee an
improved inference. Namely, as h→∞ the time to spent
in the region around x tends to t and Uhx becomes con-

stant on a large region and hence ρUx (t) → Uhx (x) which
contains no information about ps(x). Therefore, to reli-

ably infer that ρUx significantly deviates from Uhx (x) we

must also consider the relative error of [ρUx − Uhx (x)] de-
picted in Fig. 3 (orange line). There exists an ”optimal
coarse graining” where the uncertainty of simultaneously

inferring ρUx and ρUx −Uhx (x) is minimal (minimum of the
solid lines in Fig. 3) which represents the most reliable

and informative estimate of ρUx . In Sec. V we will turn
to an analogous “optimal coarse graining” with respect
to current variances and a system’s dissipation.

10−1 100 101

h

10−4

10−2

100

re
la

ti
ve

er
ro

r
va

r A
/
〈A
〉2

A = ρUx

A = ρUx − 1/2πh2

FIG. 3. Relative error of ρUx (t) (blue line) compared to the

relative error of [ρUx (t)−Uhx (x)] (orange line) as a function of
the coarsening scale h for the rotational flow Eq. (2) with Ω =
3 for time t = 10 with a Gaussian window function Eq. (3)
around x = (1, 0)T with width h, i.e. Uhx (x) = (2πh2)−1.
The intersection point of blue and orange lines at h ≈ 1.3
yields an ”optimal coarse graining” where the maximum of
the two lines (solid line) is minimal, whereas the maximum
of the relative errors diverges as h → ∞ since 〈A〉s → 0 and
diverges logarithmically for h→ 0 [58].

We now consider coarse-grained time-averaged cur-
rents. To compute the correlation of the current at a
point x and the density at y we need to consider〈
JUx (t)ρUy (t)

〉
s

=

∫ t

0

dτ

∫ τ ′=t

τ ′=0

〈
Uhx (xτ )Uhy (x′τ ) ◦ dxτ ′

〉
s
.

(24)

Relabeling with t1 ≤ t2, introducing the notation

〈· · ·〉xt1
=z

xt2=z′ ≡ 〈δ(xt1 − z)δ(xt2 − z′) · · ·〉s , (25)

and considering the Stratonovich increments

◦dxτ ≡ xτ+dτ/2 − xτ−dτ/2, (26)

and subtracting the mean values (15) and (17), we can
write the correlation as

Cxy
Jρ (t) = Ît,Uxy

[ 〈◦dxt1〉xt2
=z′

xt1
=z

dt1

+
〈◦dxt2〉

xt2
=z

xt1=z′

dt2
− 2js(z)ps(z

′)

]
. (27)

Eq. (27) is harder to compute and more difficult to inter-
pret as compared to Cxy

ρρ (t) (see Eq. (23)). The quantities
involving Stratonovich increments contain increments at
times t1 or t2 > t1. The increments are conditioned on
initial and final points z, z′ where z always denotes the
point where the increment occurs. Via the integral oper-
ator in Eq. (18) or (22) the z variable is integrated over
Uhx (z), i.e. in Cxy

Jρ (t) the variable z corresponds to the po-

sition at which the (coarse-grained) current is evaluated.
That means that correlations of a current in a window at
x and density in a window at y depend on initial-point
increments at time t1 at x conditioned on reaching point
in a window at y at t2, and on final-point increments at
time t2 in a window at x conditioned on starting in a win-
dow at point y at t1. We define the increments divided
by dti to be the ”initial- and final-point currents”,

jin(z′, t2 − t1; z) ≡
〈◦dxt1〉xt2

=z′

xt1=z

dt1

jfi(z, t2 − t1; z′) ≡
〈◦dxt2〉

xt2
=z

xt1
=z′

dt2
. (28)

In order to understand the correlation in Eq. (27) we
must therefore understand initial- and final-point cur-
rents. This is a priori not easy, since initial-point cur-
rents involve both, spatial increments at t1 and proba-
bilities of reaching a final point at time t2 > t1, which
involves non-trivial correlations — a given displacement
affects (and thus correlates with) the probability to reach
the final point. We will derive a statement (“Lemma”)
in the next subsection that solves all mathematical diffi-
culties related to this issue. Then we will make intuitive
sense of the result by exploiting the dual-reversal sym-
metry in Eq. (11).

Before doing so, we also consider the scalar current-
current covariance Cxy

J·J(t) (note that the complete fluc-

tuations and correlations of JUx (t) are characterized by
the d × d covariance matrix with elements (Cxy

JJ(t))ik =
Cxy

JiJk
(t); here we focus on the scalar case Cxy

J·J(t) ≡
TrCxy

JJ(t)). Notably, almost all results remain completely
equivalent for other elements of the covariance matrix,
scalar products simply have a slightly more intuitive ge-
ometrical interpretation and notation. Writing down the
definition and using the notations as in the steps towards
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Eq. (27) we immediately arrive at

Cxy
J·J(t) =Ît,Uxy

[ 〈◦dxt1 · ◦dxt2〉xt2
=z′

xt1
=z

dt1dt2

+
〈◦dxt1 · ◦dxt2〉

xt2
=z

xt1=z′

dt1dt2
− 2js(z) · js(z′)

]
,

(29)

which is similar to the correlation in Eq. (27) but in-
volves an average over scalar products of initial- and final-
point increments along individual trajectories “pinned”
at initial- and end-points. We will return to Eq. (29) and
solve for these increments in Subsec. IV F upon having
explained the density-current correlation.

C. Lemma

To be able to treat expressions involving the incre-
ments correlated with future positions, we need a tech-
nical lemma that will turn out to be very powerful and
central to all calculations. Consider an Itô noise incre-
ment

√
2D(xτ )dWτ (or equivalently σ(xτ )dWτ ) with

dWτ = Wτ+dτ −Wτ . In the following we will need to
compute the expected values involving expressions like

? =
〈[√

2D(xτ )dWτ

]
k
U(xτ )V (xτ ′)

〉
s
, (30)

where U(x′) and V (x′) are arbitrary differentiable,
square integrable functions, the subscript k denotes the
k-th component, and the subscript s denotes that the
process evolves from ps(x

′). Correlations of dWτ =
Wτ+dτ −Wτ with any function of xτ ′ at a time τ ′ ≤ τ
vanish by construction of the Wiener process (it has nom-
inally independent increments). However, correlations
with functions at τ ′ > τ are nontrivial.

Note that given an initial point x0 = z and setting√
2D(z)dW0 = ε, the Itô/Langevin Eq. (5) predicts a

displacement dx0(z, ε) = [F(z) +∇Tz D(z)]dt′ + ε. With
this we can write the expectation in Eq. (30) for τ =
0 < t′ = τ ′ as εk integrated over the probability to be at
points z, z + dx0(z, ε), z′ at times 0, dt′, t′, i.e.

? =

∫
dz

∫
dz′U(z)V (z′)×∫

dεP(ε)εkG(z′, t′ − dt′|z + dx0(z, ε))ps(z), (31)

where the probability P(ε) of
√

2D(z)dW0 = ε is given
by a Gaussian distribution with zero mean and covariance
matrix 2D(z)dt′. Since this distribution is symmetric
around 0, only terms with even powers of the components
of ε survive the P(ε)-integration. Noting that for dt′ → 0
we have G(z′, t′ − dt′|z + dx0(z, ε)) → [1 + dx0(z, ε) ·
∇z]G(z′, t′|z), we see that the only even power of the

components of ε in εkG(. . . ) gives

? =

∫
dz

∫
dz′U(z)ps(z)V (z′)×∫

dεP(ε)εkε · ∇zG(z′, t′|z), (32)

which using
∫
dεP(ε)εkεj = 2Dkj(z)dt′ yields the result

? =

∫
dz

∫
dz′U(z)ps(z)V (z′) [2D(z)∇zG(z′, t′|z)]k dt

′.

(33)

Rewritten terms of Pz(z′, t′) ≡ G(z′, t′|z)ps(z) and

ĵgz ≡ −ps(z)D(z)∇zp
−1
s (z) we have ĵgzPz(z′, t′) =

−ps(z)D(z)∇zG(z′, t′|z), and thus

? = −2

∫
dz

∫
dz′U(z)V (z′)

[̂
jgz

]
k
Pz(z′, t′)dt′. (34)

Motivated by the dual-reversal symmetry and the an-
ticipated applications we define the dual-reversed cur-

rent operator by inverting ĵ and concurrently inverting
js → −js, i.e.

ĵ‡x ≡ −ĵ−jsx = −
[̂
jgx − p−1

s (x)js(x)
]

= ps(x)D(x)∇xp
−1
s (x) + p−1

s (x)js(x). (35)

Since ĵ‡z − ĵz = −2ĵg we can rewrite Eqs. (33)-(34) as

? =

∫
dz

∫
dz′U(z)V (z′)

(
ĵ‡z − ĵz

)
k
Pz(z′, t′)dt′, (36)

which will turn out to be the crucial part of the following
calculations and will allow for an intuitive interpretation
of the results in terms of dual-reversed dynamics.

D. Application of the Lemma to initial- and
final-point currents

In order to quantify and understand the density-
current correlation expression in Eq. (27), we now turn
back to the initial- and final-point currents, recalling the
definitions in Eq. (28). These observables characterize
the mean initial- and final displacements of “pinned”
paths of duration t2 − t1 conditioned on the respective
initial and final points z, z′ or z′, z. The fact that both
are currents in z justifies the name “initial- and final-
point current”. Such objects turn out to play a crucial
role in the evaluation and understanding of correlations
of densities and currents, see Eq. (27). The computation
of current variances in fact involves the expectation of
scalar products of such displacements (see Eq. (29)), but
we first focus on simple displacements.
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Final-point currents can be computed by substituting
for ◦dxτ and integrating by parts as in Eq. (17),

〈◦dxt2〉
xt2

=z

xt1=z′

dt2
=

∫
dz1

∫
dz2δ(z1 − z′)δ(z2 − z)×

Pz1(z2, t2 − t1)[F(z2) +∇Tz2
D(z2)]

=[F(z)−D(z)∇z]Pz′(z, t2 − t1)

=ĵzPz′(z, t2 − t1), (37)

where the Itô term involving dWt2 vanishes whereas the
Stratonovich correction term survives. Therefore, the
final-point current is obtained from the two-point den-
sity and current operator, both appearing in the Fokker-

Planck equation (recall that (∂t +∇x · ĵx)Py(x, t) = 0)

jfi(z, t2 − t1; z′) = ĵzPz′(z, t2 − t1). (38)

For the initial-point current analogous computations
yield an Itô increment as a correction

jin(z′, t2 − t1; z) = ĵzPz(z′, t2 − t1)

+ 〈
√

2D(xt1)dWt1〉
xt2

=z′

xt1
=z . (39)

Note that the latter Itô increment also appears in the
calculations in Eqs. (17) and (37), but its mean vanishes
since it involves end-point increments dWt2 (note t2 and
not t1), which are by construction uncorrelated with the
evolution up to time t2. The correction term here does
not vanish since the increment at time t1 is correlated
with the probability to reach z′ at time t2. Therefore
this expectation is non-trivial, but fortunately we solved
this problem with the Lemma derived in Eqs. (30)-(36).

When U and V in Eq. (36) tend to a Dirac delta func-
tion (which is mathematically not problematic since we
later integrate over z, z′) we obtain

〈
√

2D(xt1)dWt1〉
xt2

=z′

xt1
=z =

(
ĵ‡z − ĵz

)
Pz(z′, t2 − t1),

(40)

which gives, recalling Eq. (35),

jin(z′, t2 − t1; z) = ĵ‡zPz(z′, t2 − t1). (41)

Note that jin(y, t;x, 0) = −j−jsfi (x, t;y, 0) in agreement
with dual-reversal symmetry.

To better understand these currents and their sym-
metry we require some intuition about the generalized
time-reversal symmetry (i.e. the dual-reversal symme-
try), which we gain on the basis of a simple overdamped
shear flow in Fig. 4. Consider an isotropic diffusion with
additive noise in a shear flow dxτ = Fsh(xτ )dτ+

√
2dWτ

with Fsh((x, y)T ) = (0, 2x)T (see gray arrows in Fig. 4a-
c). The shear drift is purely irreversible, i.e. Frev

sh (x′) =
0. Thus, inverting the irreversible part completely in-

verts the drift F−jssh (x′) = −Fsh(x′), see blue arrows
in Fig. 4a,d. The initial-point current (purple arrow in

Fig. 4b) is difficult to understand, since it correlates with
the constraint to reach the end point after time t′. In
the case of detailed balance, the time-reversal symmetry
would allow to obtain this initial-point current as the in-
verted final-point current (yellow arrow in Fig. 4c). How-
ever, since detailed balance is broken by the shear flow
this does not suffice. Instead, one has to consider the
final-point current for the dynamics with the inverted
irreversible drift (blue arrow in Fig. 4d). According to

jin(y, t;x, 0) = −j−jsfi (x, t;y, 0) and as can be seen in
Fig. 4a, this allows to obtain the cumbersome initial-
point current (yellow) as the inverted final point current
(blue).

FIG. 4. (a) Shear drift (gray background arrows) and inverted
shear drift (blue background arrows) as described in the text,
and currents and paths from (b-d) shown in purple, yellow
and blue. We see that the purple arrow equals the inverted
blue arrow, and the purple line overlaps with the blue dashed
line, as implied by Eq. (43). (b) Simulated trajectories in
the shear flow (gray background arrows) from z = (0, 0)T to
z′ = (2, 0)T in time t′ = 1 with time always running from
dark to bright. The initial-point current, i.e. the initial-point
increment averaged over all trajectories, is depicted by the
purple arrow and the mean paths (averaged over all trajecto-
ries) by the grey curve. (c) As in (b) but from z′ = (2, 0)T

to z = (0, 0)T and final-point current depicted by a yellow
arrow. (d) As in (c) but with the inverted shear flow depicted
by blue arrows in the background.

In addition to the initial- and final-point currents, we
also depict in Fig. 4 the mean “pinned” paths. In Fig. 4a
we see that the forward and dual-reversed paths (purple
and blue dashed lines) overlap. This can also be seen
from the dual-reversal symmetry in Eq. (11).

To prove the equality of mean paths consider 0 < τ < t′

where t′ = t2 − t2 > 0. The (non-random) point

µ(τ) ≡ 〈xt1+τ 〉xt2
=z′

xt1=z on the mean path z → z′ is

given by an integral over all possible intermediate points
µ(τ) = x weighted by G(z′, t′ − τ |x)G(x, τ |z)/G(z′, t′|z)
(since xτ is a Markov process) which gives the Chapman-
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Kolmogorov-like equation

G(z′, t′|z)µ(τ) =

∫
dxG(z′, t′ − τ |x)G(x, τ |z)x. (42)

The corresponding point on the mean dual-reversed path

µ‡(τ) ≡ 〈x−jst2−τ 〉
xt2

=z

xt1=z′ from z′ to z with reversed steady-

state current js → −js is given by (using three times the
dual-reversal in Eq. (11))

G−js(z, t′|z′)µ‡(t′ − τ)

=

∫
dxG−js(z, τ |x)G−js(x, t′ − τ |z′)x

=

∫
dxG(x, τ |z)

ps(z)

ps(x)
G(z′, t′ − τ |x)

ps(x)

ps(z′)
x

=
ps(z)

ps(z′)
G(z′, t′|z)µ(τ)

= G−js(z, t′|z′)µ(τ), (43)

which implies µ(τ) = µ‡(t′−τ) for all t1 < τ < t2, so the
mean paths indeed agree (but run in opposite directions),
which completes the proof that the blue and purple paths
in Fig. 4a overlap.

E. Current-density correlation

With the definitions (28) and t′ = t2 − t1 > 0 we have

(recall the simplification of Ît,Uxy in Eq. (22))

Cxy
Jρ (t) = Ît,Uxy [jfi(z, t′; z′) + jin(z′, t′; z)− 2js(z)ps(z

′)].
(44)

As we have shown in Eqs. (38) and (41) the initial- and
final-point currents can be expressed in terms of the cur-
rent operators yielding

Cxy
Jρ (t) = Ît,Uxy [̂jzPz′(z, t′) + ĵ‡zPz(z′, t′)− 2js(z)ps(z

′)],
(45)

which allows to explicitly calculate Cxy
Jρ (t) if Pz′(z, t′) is

known. An analogous result for the scalar current vari-
ance was very recently obtained in [55] but did not estab-
lish a connection to current operators and dual-reversal
symmetry and did not consider coarse graining nor multi-
dimensional continuous-space examples. The current-
density correlation Cxy

Jρ (t) can be interpreted analogous

to Cxy
ρρ (t) as follows.

All possible paths between points z, z′ in time 0 < t′ ≤
t contribute, weighted by their corresponding probability,
to this correlation. The difference with respect to density
correlations Cxy

ρρ (t) is that now currents at position z
are correlated with probabilities to be at the point z′.
For paths z′ → z the displacement is obtained from the

familiar current operator jfi = ĵzPz′(z, t′). Paths from
z→ z′ are mathematically more involved (and somewhat
harder to understand), but can be understood intuitively

with the dual-reversal symmetry (see also Fig. 4). More
precisely, they can be understood and calculated in terms

of the dual-reversed current operator ĵ‡z ≡ −ĵ−jsz .

A direct observation that follows from the result in
Eq. (45) is that at equilibrium (i.e. under detailed bal-

ance), we have js = 0, ĵ‡z = −ĵz and Pz(z′, t′) = Pz′(z, t′)
and thus Cxy

Jρ (t) = 0 for all window functions and all

points x,y. The correlation Cxy
Jρ (t) can also be utilized to

improve the thermodynamic uncertainty relation (TUR),
as recently shown in [56]. The result in Eq. (45) thus
allows to inspect and understand more deeply this im-
proved TUR.

An explicit example of the correlation result Eq. (45)
for Cxy

Jρ (t) is shown in Fig. 5. In line with the previ-

ous arguing Cxy
Jρ (t) can be understood as a vector with

initial- and final-point contributions, Cxy
Jρ = Cin + Cfi,

where Cin ≡ Îtxy [̂j‡zPz(z′, t′) − js(z)ps(z
′)]. In the Sup-

plemental Material of [58] we have shown that for x =
y in the limit h → 0 of small windows the results
for the correlation simplify Cin(t) ' [2js(x)/ps(x) −
F(x)]varxρ(t)/4 and Cfi(t) ' F(x)varxρ(t)/4, implying
Cxx

Jρ (t) ' js(x)varxρ(t)/2ps(x). Since F = Frev + js/ps

and thus 2js(x)/ps(x) − F(x) = −F−js(x), the above
implies that for x = y and small windows h we have

−Cin = C−jsfi and Cfi points along F(x) that is tangent
to the mean trajectory [µ] at x, while Cxx

Jρ (t) points in

js(x)-direction, see Fig. 5b. For longer times t and/or

larger h, the direction of Cfi changes but −Cin = C−jsfi
still holds (see Fig. 5c) since the symmetry jin(y, t;x, 0) =

−j−jsfi (x, t;y, 0) can be applied in the integrands. Con-
versely, the two-point correlation Cxy

Jρ need not to point

along js(x) (Fig. 5d). In fact, its direction changes over
time (see inset of Fig. 5d). Notably, results for x 6= y
akin to Fig. 5d may provide deeper insight into barrier
crossing problems on the level of individual trajectories
in the absence of detailed balance.

F. Current (co)variance

Recall that the current (co)variance Eq. (29) in-
volves scalar products of initial- and final-point incre-

ments 〈◦dxt1 · ◦dxt2〉xt2
=z′

xt1
=z , which cannot be easily in-

terpreted as scalar products of currents. They are not
the scalar products of initial- and final-point currents,

since 〈◦dxt1 · ◦dxt2〉xt2
=z′

xt1=z 6= 〈◦dxt1〉
xt2

=z′

xt1=z ·〈◦dxt2〉
xt2

=z′

xt1=z .

Rather they correspond to the scalar product of the
initial- and final-point increment along the same trajec-
tory and only then they become averaged over all trajec-
tories from z to z′ (see also Fig. 2 in [58]). For t1 < t2
these are computed equivalently to Eqs. (37)-(41) based
on the Lemma (36) as

〈◦dxt1 · ◦dxt2〉xt2
=z′

xt1
=z = ĵ‡z · ĵz′Pz(z′, t′). (46)
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FIG. 5. (a) Illustration of the steady-state density (color
gradient) and current (arrows) of the two-dimensional ro-
tational flow Eq. (2) with Ω = 3. Gray dotted lines in
(a-d) are circles with radii 0.25, 0.5, 0.75, 1. (b-c) Single-
point x = y and (d) two-point time-accumulated correlation
tCxy

Jρ at t = 0.2 and t = 5 (black arrow), with final-point

Cfi ≡ Îtxy [̂jzPz′(z, t
′)− js(z)ps(z

′)] (orange) and initial-point
Cin (green) contribution, s. t. Cxy

Jρ = Cin+Cfi. Cfi(js → −js)
(gray) is the current-reversed final-point contribution which
agrees with the inverted initial-point contribution −Cin. Full
lines in (a) are the mean trajectory [µ] ≡ 〈xτ≥0〉x0=x (orange)
and its current-reverse [µjs→−js ] (gray). Ux,y (shaded circles)
is a Gaussian at x,y with width h, see Eq. (3).

However, according to the convention
∫ t
t1
dt2δ(t2 − t1) =

1/2 in Eq. (18), we also need to consider the case t1 = t2,
i.e. t′ = 0, which did not contribute for Cρρ and CJρ. In
the case t1 = t2 (recall the definition in Eq. (25))

〈◦dxt1 · ◦dxt2〉
xt2

=z′

xt1
=z

≡〈δ(xt1 − z) ◦ dxt1 · δ(xt2 − z′) ◦ dxt2〉s
t1=t2=

〈
δ(xt1 − z)

√
2D(xt1)dWt1 ·

δ(xt2 − z′)
√

2D(xt2)dWt2

〉
, (47)

where we used that for t1 = t2 the only term surviving
is dW 2

t1 (and not dWt1dt1 and dt21, which is why such
terms only enter in current-current expressions but not
in current-density or density-density correlations), as well

as (by Itô’s isometry)
∫ t
t1
dt2dW

j
t1

dWl
t2

dt2
= δjldt1. Using

Pz(z′, t′ = 0) = δ(z− z′)ps(z) we find for t1 = t2

〈◦dxt1 · ◦dxt2〉xt2=z′

xt1
=z

= Pz(z′, 0)

d∑
i,j,l=1

[
√

2D(z)]ij [
√

2D(z′)]ilδ(t1 − t2)δjldt1

= ps(z)δ(z− z′)
d∑
i=1

[2D(z)]iiδ(t1 − t2)dt1

= 2Tr[D(z)]ps(z)δ(z− z′)δ(t1 − t2)dt1. (48)

Plugging this into Eq. (29), we obtain, using Eq. (46)
and accounting for the t′ = 0 contribution, the result for
current covariances in the form of

Cxy
J·J(t) =

2

t

∫
dzTr[D(z)]Uhx (z)Uhy (z)ps(z) (49)

+ Ît,Uxy [̂j‡z′ · ĵzPz′(z, t′) + ĵ‡z · ĵz′Pz(z′, t′)− 2js(z) · js(z′)].

The second line is interpreted analogously to the current-
density correlation in Eq. (45) with the only difference
that the scalar product of current operators reflects scalar
products of increments along individual trajectories. The
first term, however, does not appear in Cxy

Jρ and Cxy
ρρ .

As can be seen from the derivation in Eq. (48) this term
originates from the purely diffusive (i.e. Brownian) term
involving dxτ · dxτ = 2TrD(z)dτ and only appears for
t1 = t2, i.e. t′ = 0. Thus, this term cannot be inter-
preted in terms of trajectories from z to z′ or vice versa,
but instead reflects that due to the nature of Brownian
motion the square of instantaneous fluctuations (dxτ )2

does not vanish but contributes on the order dτ . Note
that since here z = z′ this term only contributes if Uhx (z)
and Uhy (z′) have non-zero overlap.

For x = y the covariance becomes the current variance
varxJ(t) ≡ Cxy

J·J(t) which plays a vital role in stochas-
tic thermodynamics. As an application of the result in
Eq. (49) we use the TUR-bound under concurrent varia-
tion of the coarse-graining scale h to optimize the infer-
ence of a system’s dissipation via current fluctuations.

V. APPLICATION TO INFERENCE OF
DISSIPATION

We now apply the results for the current variance
varxJ(t) ≡ Cxx

J·J(t) in Eq. (49) for x = y. For an indi-

vidual component, e.g. Jy ≡ [JUx ]y, of the vector JUx the
equivalent result reads

varxJy (t)=
2

t

∫
dz[D(z)]yyU

h
x (z)Uhx (z)ps(z) + Ît,Uxy [(̂j‡z′)y×

(̂jz)yPz′(z, t′) + (̂j‡z)y (̂jz′)yPz(z′, t′)− 2[js(z)]y[js(z
′)]y].

(50)

With the dissipation rate Σ̇ in Eq. (10), current observ-

ables such as Jy ≡ [JUx ]y satisfy the TUR [15, 34] (in the
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form relevant below first proven in [15])

varxJy (t)

〈Jy〉2s
≥ 2

tΣ̇
. (51)

This bound is of particular interest since it allows to infer
a lower bound on a system’s dissipation from measure-
ments of the local mean current and current fluctuations
[17, 53, 73–75]. Note that Eq. (51) implicitly assumes
“perfect” statistics, i.e. 〈Jy〉s and varxJy (t) are the exact

mean and variance for the process under consideration
(not limited by sampling constraints on a finite number
of realizations).

We now investigate the influence of the coarse grain-
ing on the sharpness of the bound (51). One might
naively expect that coarse graining annihilates informa-
tion. However, as shown in [58] the current fluctuations
diverge in spatial dimensions d ≥ 2 in the limit h → 0
(of no coarse graining), whereas the mean converges to

a constant (note that Σ̇ does not at all depend on Uhx ).
The exact asymptotics for h → 0 in [58] demonstrate
that the bound (51) becomes entirely independent of the
process (i.e. it only depends on ps but contains no infor-
mation about the non-equilibrium part of the dynamics).
Therefore, the left hand side of the inequality (51) tends
to∞ as h→ 0, rendering the TUR without spatial coarse
graining unable to infer dissipation beyond the statement
Σ̇ ≥ 0 for h = 0.

However, the naive intuition is correct in the limit
of “ignorant” coarse graining h → ∞, where Uhx be-
comes asymptotically constant in a sufficiently large hy-
pervolume centered at x (i.e. in a hypervolume A where∫

A
ps(x)dx ≈ 1). The integration over a constant Uhx = c

yields
〈
JUx (t)

〉
s

= c
∫
dzjs(z) = 0 for the mean Eq. (17).

The vanishing
〈
JUx (t)

〉
s

may be seen in two ways. First,

since ∇z · js(z) = 0, curl js(z) = ∇z× f(z) and by Stokes
theorem

∫
A
d2z∇z× f(z) =

∫
∂A

f ·dl which vanishes since
at the boundary ∂A at ∞ we have ps → 0, thus js → 0
and therefore the vector potential f → 0. Second, for

Uhx = c we have JUx (t) = c
t (xt − x0) (and we assume

x0 to be sampled from ps(x)). Then x0 and xt are
both distributed according to ps, thus 〈xt〉s = 〈x0〉s and

t
〈
JUx (t)

〉
s
/c = 〈xt〉s − 〈x0〉s = 0. Conversely, the vari-

ance remains strictly positive. Therefore, also for h→∞
the left hand side of the inequality (51) diverges, render-
ing the TUR with an “ignorant” coarse graining inca-
pable of inferring dissipation (again only gives Σ̇ ≥ 0 as
for h = 0).

These two arguments, i.e. the necessity of coarse grain-
ing [58] and the failure of an “ignorant” coarse graining,
imply that an intermediate coarse graining exists that is
optimal for inferring dissipation via the TUR (51).

We first demonstrate this finding using a two-
dimensional rotational flow (2) with Gaussian coarse
graining window Eq. (3). We evaluate the left hand side
of Eq. (51) for varying h and x and compare it to the

constant right hand side of Eq. (51). Particularly for
D(z) = D1, we have ps(z) = r/(2πD) exp(−rz2/(2D))
and js(z) = Ωps(z)(z2, −z1)T and the dissipation rate
Eq. (10) is given by

Σ̇ =

∫
dz

jTs (z)

ps(z)
D−1(z)

js(z)

ps(z)
ps(z) =

Ω2

D

∫
dz z2ps(z)

=
Ω2

D

〈
x2

0

〉
s

=
Ω2

D

〈
x2

1 + x2
2

〉
s

=
Ω2

D
2
D

r
=

2Ω2

r
. (52)

Thus the TUR in Eq. (51) for the rotational flow becomes

varxJy (t)

〈Jy〉2s
≥ r

tΩ2
. (53)

The results shown in Fig. 6a-d demonstrate, as argued
above, that relative fluctuations diverge as h → 0,∞.
For this example, the relative error as a function of h has
a unique minimum (slightly depending on x, and pos-
sibly on other parameters such as t). This means that
(restricted to Uhx being a Gaussian around x) there is
a coarse graining scale h that is optimal for inferring a
lower bound on the dissipation, that may also provide
some intuition about the formal optimization carried out
in [75]. This result demonstrates that coarse graining
trajectory data a posteriori can improve the inference of
thermodynamical information, which is a strong motiva-
tion for considering coarse graining.

In particular, note that this method is readily applica-
ble, i.e. one does not need to know the underlying process
(as long as the dynamics is overdamped). As was done in
Fig 6e-h one simply integrates the trajectories to obtain
the coarse grained current as defined in Eq. (1). Then,
the mean and variance are readily obtained from the fluc-
tuations along an ensemble of individual trajectories, and
for each value of x and h one determines a lower bound on
the dissipation via Eq. (51). Finally, one takes the best
of those bounds. We here only consider Gaussian Uhx for
the coarse graining, but due to the flexibility of the the-
ory one could even choose window functions that do not
have to relate to the notion of coarse graining. Notably,
a Gaussian indicator function is in this case better than
e.g. a rectangular indicator function (which one usually
uses for binning data) due to an improved smoothing ef-
fect. Moreover, one further expects a reduced error due
to discrete-time effects.

Note that compared to many of the similar existing
methods [17, 54, 56], we neither advise to rasterize the
continuous dynamics to parameterize (i.e. “count”) cur-
rents nor to approximate the dynamics by a Markov-
jump process, which apart from being correct (note that
a Markov-jump assumption is only accurate in the pres-
ence of a time-scale separation ensuring a local equilibra-
tion, e.g. as a results of high barriers separating energy
minima) has the great advantage of not having to pa-
rameterize rates at all. Instead one simply integrates
trajectories according to Eq. (1).

A generalization to windows that are not centered at
an individual points as well as the use of correlations in
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Eq. (45) entering the recent so-called CTUR inequality
[56] will be considered in forthcoming publications.

To underscore the applicability of the above inference
strategy, we apply it to a more complicated system, for
which a Markov jump process description would be dif-
ficult due to the presence of low and flat barriers and
extended states. The results are shown Fig. 6e-h. The ex-
ample is constructed by considering the two-dimensional
potential

φ(x, y) =0.75(x2 − 1)2+

(y2 − 1.5)2((x+ 0.5y − 0.5)2 + 0.5) + c (54)

where c is a constant such that ps(z) = exp[−φ(z)] is nor-
malized. We consider isotropic additive noise D(z) = D1
and construct the Itô/Langevin equation for the process
as

dxτ = −D{∇φ}(xτ )dτ + Firrev(xτ ) +
√

2DdWτ , (55)

where

Firrev(z) =
js(z)

ps(z)
≡ −DΩ

[
0 −1
1 0

]
· {∇φ}(z), (56)

is an irreversible drift that is by construction orthogonal
to ∇φ and thus does not alter the steady-state (i.e. same
ps = exp[−φ] for equilibrium (Ω = 0) or any other Ω).
With Eq. (56) the dissipation in Eq. (10) for this process
reads

Σ̇ = DΩ2

∫
d2x{∇φ}(x)T

[
0 −1
1 0

]T [
0 −1
1 0

]
· (57)

{∇φ}(x)ps(x) = DΩ2

∫
d2x{∇φ}2(x) exp [−φ(x)] ,

which is solved numerically and gives Σ̇ = 19.65DΩ2.
We see in Fig. 6h that some intermediate coarse graining
h is still optimal, but the optimal scale h now depends
more intricately on x and the curves are not convex in h
anymore.

Overall we see that the approach is robust and easily
applicable, and does not require to determine and param-
eterize any rates. Moreover, due to the implications of
the theory to the limits h→ 0,∞ we can assert that some
intermediate coarse graining will generally be optimal.

VI. SIMPLIFICATIONS AND SYMMETRIES

In this section we list the symmetries obeyed by the
results in Eqs. (15),(17),(23),(45),(49) (with integral op-
erator (22)). Note that the limit h→ 0 is carried out in
[58] and the limit h → ∞ gives Uhx = c as noted before
which greatly simplifies the further analysis. The limits
t → 0 and t → ∞ will be addressed in Section VII (see
also Supplemental Material in [58]).

First consider dynamics obeying detailed balance, i.e.

js = 0. We then have ĵ‡z = −ĵz = −ĵg(z) and the

dual-reversal symmetry in Eq. (11), simplifies to the de-
tailed balance statement G(y, t|x)ps(x) = G(x, t|y)ps(y)
or Pz(z′, t) = Pz′(z, t). From this we obtain the following
simplifications for js = 0:〈

JUx (t)
〉

s
= 0, Cxy

Jρ (t) = 0

Cxy
ρρ (t) = 2Ît,Uxy [Pz(z′, t′)− ps(z)ps(z

′)] ,

Cxy
J·J(t) =

2

t

∫
dzTr[D(z)]Uhx (z)Uhy (z)ps(z)

− 2Ît,Uxy [̂jg(z) · ĵg(z′)Pz(z′, t′) + js(z) · js(z′)]. (58)

For the remainder of this section we consider js 6= 0. Note
that by definition the interchange x ↔ y leaves Cxy

ρρ (t)

and Cxy
J·J(t) invariant, but not Cxy

Jρ (t) since it considers
currents at x and densities at y.

For single-point correlations and variances x = y
(more precisely Uhx = Uhy ) the integrations over z and
z′ are equivalent and thus the results simplify to

Cxx
ρρ (t) = 2Ît,Uxx [Pz(z′, t′)− ps(z)ps(z

′)]

Cxx
Jρ (t) = Ît,Uxx [(̂jz′ + ĵ‡z)Pz(z′, t′)− 2js(z)ps(z

′)]

Cxx
J·J(t) =

2

t

∫
dzTr[D(z)][Uhx ]2(z)ps(z)

+ 2Ît,Uxx [̂j‡z · ĵz′Pz(z′, t′)− js(z) · js(z′)]. (59)

Now we again allow x 6= y and consider the process and
the js ↔ −js inverted process. Then, from Eq. (11) and

[̂j‡z′ · ĵz]−js = −ĵz′ · [−ĵ‡z] = ĵz′ · ĵ‡z = ĵ‡z · ĵz′ , we get

[̂j‡z′ · ĵzPz′(z, t′)]−js = ĵ‡z · ĵz′Pz(z′, t′) and thus obtain〈
ρUx (t)

〉
s

=
〈
ρUx (t)

〉−js
s〈

JUx (t)
〉

s
= −

〈
JUx (t)

〉−js
s

Cxy
ρρ (t) = [Cxy

ρρ (t)]−js

Cxy
Jρ (t) = −[Cxy

Jρ (t)]−js

Cxy
J·J(t) = [Cxy

J·J(t)]−js . (60)

In addition to the symmetries of the first and second cu-
mulants, a stronger path-wise version of the dual-reversal
symmetry in Eq. (11) (or time-reversal symmetry at equi-
librium) dictates symmetries of the full distributions of
the functionals of steady-state trajectories under the re-
versal js ↔ −js. Notably, at equilibrium (js = 0) these
simplify to symmetries of the process (which is a much
stronger result since we do not have to compare to an-
other (artificial) process with an inverted js).

To motivate this stronger symmetry, note that for
steady-state initial conditions for any finite set of times
t1 < t2 < · · · < tn we have that the joint density Pn(. . . )
for positions zi at equally spaced times ti = i × ∆t for
i = 0, 1, . . . , n is given by (since we have a Markov pro-
cess by definition, i.e. Eq. (4) has no memory)

Pn(z0, t0; z1, t1; . . . ; zn, tn)

= ps(x0)G(x1,∆t|x0) · · ·G(xn,∆t|xn−1). (61)
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FIG. 6. (a) Steady-state density (blue color gradient) and current (yellow arrows) for the rotational flow Eq. (2) with Ω = 3.
Points around which the currents are evaluated in (b-d) are denoted by colored crosses. (b) Simulated values (circles) of the
mean y-component of the time-integrated current from 2, 000 trajectories of length t = 10 with time-step dt = 0.001 (using
the stochastic Euler algorithm) starting from steady-state initial conditions using a Gaussian window function Eq. (3) with
different coarse-graining scales h. Analytical results Eq. (17) are shown with lines. (c) As in (b) but for variances. Simulations
(circles) are shown alongside analytical results (lines; the results are analytic up to one time-integration, see Eq. (50)) for the
variance of currents. (d) The relative error (ratio of variance and mean-squared) as a function of h features a minimum at
an intermediate h. At this minimum, the current fluctuations give the best lower bound on the dissipation via the TUR (51)

at the value 2/(tΣ̇) = 2/(10 × 18) = 0.011 (black line). (e) As in (a) but for the more complicated process in Eq. (55) with
D = 1 and we choose Ω = 0.957 to have the same dissipation as in (d); here the dissipation is obtained by means of a numerical
integration. (f) As in (b) but for the process in (e) the “analytical” mean (17) had to be evaluated by means of a numerical
integration. (g) As in (c) but simulated values are shown by circles and dashed line (but without a comparison to results of
numerical integration since these require the knowledge of the propagator). (h) As in (d) but for the process in (e). The relative
error may display several local minima. Some intermediate h still allows for an optimal inference of the dissipation via the
TUR (black line). Note that the relative error diverges (orange line) where the mean crosses zero (orange line in (b)).

By applying the dual-reversal symmetry Eq. (11) n − 1
times, we obtain

Pn(z0, t0; z1, t1; . . . ; zn, tn)

= G−js(x0,∆t|x1) · · ·G−js(xn−1,∆t|xn)ps(xn)

= P−jsn (zn, 0; zn−1,∆t; . . . ; z0, n∆t)

= P−jsn (zn, t0; zn−1, t1; . . . ; z0, tn). (62)

The n + 1 points (z1, . . . , zn) represent a discrete-time
path for which Eq. (62) implies the path-wise discrete-
time dual-reversal symmetry (denote t = tn = n∆t)

Pn(z0, t0; z1, t1; . . . ; zn, tn)

= P−jsn (zn, t− tn; zn−1, t− tn−1; . . . ; z0, t− t0), (63)

i.e. the probability of forward paths (xti)i=0,1,...,n agrees
with the probability of backwards paths of the process
with inverted steady-state current js → −js, i.e.

P [(xti)i=0,1,...,n] = P−js [(xt−ti)i=0,1,...,n] . (64)

Note that at equilibrium, js = 0, this is nothing but the
detailed balance for discrete-time paths.

Assuming that one can take a continuum limit ∆t →
0 (and that a resulting path measure exits) one could
conclude that continuous time paths fulfill the symmetry
(see also [55])

P [(xτ )0≤τ≤t] = P−js [(xt−τ )0≤τ≤t] . (65)

Based on this strong symmetry, and noting that densities
are symmetric while currents are antisymmetric under
time reversal, i.e.

ρUx [(xτ )0≤τ≤t] = ρUx [(xt−τ )0≤τ≤t]

JUx [(xτ )0≤τ≤t] = −JUx [(xt−τ )0≤τ≤t] , (66)

we obtain the following symmetries

P
[
ρUx (t) = u

]
= P−js

[
ρUx (t) = u

]
P
[
JUx (t) = u

]
= P−js

[
JUx (t) = −u

]
. (67)

Eq. (67) implies symmetries for mean values and vari-
ances (x = y) listed in Eq. (60) since it implies that
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all moments of ρUx (t) agree and that the n-th mo-

ment of a current component i fulfills
〈

[JUx (t)]i
n
〉

s
=〈

[−JUx (t)]i
n
〉−js

s
= (−1)n

〈
[JUx (t)]i

n
〉−js

s
.

Note that Eq. (67) implies that the statistics of ρ(t)
(incl. all moments) in general depends on js but is invari-
ant under the inversion js ↔ −js. Moreover, current fluc-
tuations at equilibrium (js = 0, hence PEQ ≡ P = P−js)
are symmetric around the mean

〈
JUx

〉
s

= 0, i.e.

PEQ

[
JUx (t) = u

]
= PEQ

[
JUx (t) = −u

]
. (68)

The symmetries for correlations in Eq. (60), possibly with
x 6= y, may be seen as implications of the more general
symmetries

P
[
ρUx (t)ρUy (t) = u

]
= P−js

[
ρUx (t)ρUy (t) = u

]
P
[
JUx (t)ρUy (t) = u

]
= P−js

[
JUx (t)ρUy (t) = u

]
P
[
JUx (t) · JUy (t) = u

]
= P−js

[
JUx (t) · JUy (t) = u

]
. (69)

VII. SHORT AND LONG TRAJECTORIES AND
LARGE DEVIATION THEORY

As already noted on several occasions, in the case of
steady-state initial conditions the mean values of the
time-averaged density and current are time-independent,
see Eqs. (15),(17). The correlation and (co)variance re-
sults (Eqs. (23),(45),(49) with integral operator (22))
display a non-trivial temporal behavior dictated by the

time integrals 1
t

∫ t
0
dt′
(

1− t′

t

)
over two-point densities

Pz(z′, t′).
In Fig. 7a-c we depict this time-dependent behavior for

the two-dimensional rotational flow Eq. (2) for x = y.
While the short-time behavior can be obtained by anal-
ogy to the short-time expansion in the SM of [58], the
long-time behavior shows that C(t), var(t) ∝ t−1, as ex-
pected from the central limit theorem (and large devia-
tion theory) due to sufficiently many sufficiently uncorre-
lated visits of the window region. Accordingly, a serious
problem is encountered in dimensions ≥ 2 in the limit
h → 0 because diffusive trajectories do not hit points
(for a detailed discussion see [58]).

The limit of tC(t), tvar(t) for large t can be obtained
as follows. We have

∫∞
t′
dt′′[Py(x, t′′) − ps(x)] → 0 for

t′ → ∞ since Py(x, t′)
t′→∞−→ ps(x) and ĵxPy(x, t′)

t′→∞−→
js(x) with exponentially decaying deviations. This im-

plies that for large t, we can replace 1
t

∫ t
0
dt′
(

1− t′

t

)
by

1
t

∫∞
0
dt′ in the integral operator (22). This replacement

of integrals and the scaling are also confirmed by a spec-
tral expansion (see e.g. [51] for spectral-theoretic results
for the empirical density).

We now enter the realms of large deviation theory. Ac-
cording to the central limit theorem (for strictly positive
h, see [58]), the probability distributions p(At = a) for

At = ρUx (t) and At = JUx (t) become Gaussian for large t,
such that we obtain the large deviation rate function

I(a) = − lim
t→∞

1

t
ln p(At = a) =

(a− µ)2

2σ2
A

, (70)

where the mean µ is given by
〈
ρUx (t)

〉
s

=
∫
ddzUhx (z)ps(z)

and
〈
JUx (t)

〉
s

=
∫
ddzUhx (z)js(z) (see Eqs. (15),(17)) and

the large deviation variance σ2
A follows by the above ar-

guments from Eqs. (23) and (49) for x = y as in Eq. (59)
as

σ2
ρUx
≡ lim
t→∞

t varxρ(t)

= 2

∫ ∞
0

dt′
∫
ddz

∫
ddz′Uhx (z)Uhx (z′)

× [Pz′(z, t)− ps(z)ps(z
′)] , (71)

as well as

σ2
JU
x

≡ lim
t→∞

t varxJ(t) = 2TrD

∫
ddz [Uhx ]2(z)ps(z)

+ 2

∫ ∞
0

dt′
∫
ddz

∫
ddz′Uhx (z)Uhx (z′)

×
[̂
jz · ĵ‡z′Pz′(z, t)− js(z)js(z

′)
]
. (72)

For any Lebesgue integrable window function Uhx (i.e. if
the window size h fulfills h > 0), and in d = 1 even for the
delta-function (see SM of [58]), this variance is finite, and
the central limit theorem applies as described above. The
parabolic rate function for a two dimensional system with

finite window size h > 0 is shown for the density ρUx (t)

and current JUx (t) in Fig. 7e and g. The agreement of
the simulation and the variance given by Eqs. (71)-(72)
is readily confirmed.

VIII. CONCLUSION

In this extended exposé accompanying the Letter [58]
we presented the conceptual and technical background
that is required to describe and understand the statis-
tics of the empirical density and current of steady-state
diffusions, which are central to statistical mechanics and
thermodynamics on the level of individual trajectories.
In order to gain deeper insight into the meaning of fluc-
tuations of the empirical density and current we made
use of a generalized time-reversal symmetry. We carried
out a systematic analysis of the effect of a spatial coarse
graining. A systematic variation of the coarse-graining
scale in an a posteriori smoothing of trajectory data was
proposed as an efficient method to infer bounds on a sys-
tem’s dissipation. Moreover, we discussed symmetries
in the statistics of the empirical current and density that
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FIG. 7. We consider the rotational flow Eq. (2) with Ω = 3 starting from steady-state initial conditions and use a Gaussian
coarse-graining window Eq. (3) around x = (0, 1)T with width h = 0.5. (a) Analytical result for the variance of the time-

averaged density ρUx (t) multiplied by time t as a function of t. At long times the variance approaches the large deviation variance
in Eq. (72). (b) As in (a) but for the components of the correlation vector Cxx

Jρ (t) as in Eqs. (45) and (59). (c) As in (a) but for
the variances of the current components Eq. (50). (d) Simulation of the probability density function of the empirical density

ρUx (t) assuming the parameters listed above. Colors of lines and symbols throughout denote t = 40, 60, 80, 100 from dark to
bright. The simulated probability densities were obtained from histograms of 2 × 104 trajectories for each set of parameters.

(e) Parabolic rate function with variance from Eq. (72) (line) and simulated rate function I(ρ) = − 1
t

lnP [ρUx (t) = ρ] (symbols).

The numerical value of the rate function at the mean ρ = 〈ρUx (t)〉s was subtracted. (f-g) As in (d-e) but for the x-component

of the current [JUx ]x instead of the density ρUx .

arise as a result of the (generalized) time-reversal symme-
try. Throughout the work we advocated the application
of stochastic calculus, which is very powerful in the analy-
sis of related problems and represents a more direct alter-
native to Feynman-Kac theory and path-integral meth-
ods. The technical background and concepts presented
here may serve as a basis for forthcoming publications,
including the generalization of the presented inference

strategy to windows that are not centered at an individ-
ual point, as well as the use of the correlations result
entering the CTUR inequality [56].
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