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Estimating ruggedness of free-energy landscapes of small globular proteins from principal
component analysis of molecular dynamics trajectories
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The internal dynamics of biomolecules, and hence their function, is governed by the structure of their free-
energy landscape. Early flash-photolysis experiments on myoglobin suggested that the free-energy landscapes of
proteins are hierarchically structured, with a characteristic distribution of free-energy barriers which gives rise
to anomalous diffusion. Analytical results have been derived for one-dimensional or high-dimensional hierar-
chical free-energy landscapes. Recent improvements in methods and computer performance enable generating
sufficiently long molecular dynamics (MD) trajectories to extract dynamics information covering many orders
of magnitude, such that the broad distributions of energy barriers of proteins become accessible to quantitative
studies of intermediate dimensions. In this work, we present a nonequilibrium method to estimate barrier height
distributions from microsecond-long MD simulations. It infers barrier height distributions from anomalous
diffusion exponents derived from principal component analysis and by comparison to simple hierarchical lattice
models. These models are d-dimensional lattices of states separated by free-energy barriers, the heights of which
are distributed as p(�G) = 1/γ exp(−�G/γ ). The parameter γ quantifies the “ruggedness” of the free-energy
landscape in such models. We show that both parameters, i.e., ruggedness and effective dimensionality d ,
can be inferred from anomalous diffusion exponents. Assuming a similar dependency of anomalous diffusion
exponents on γ and d for proteins, we estimate the ruggedness of the free-energy landscapes of 500 small,
single-domain globular proteins between 15 and 20 kT per dimension with an estimated accuracy of 4.2 kT and
dimensionality between 40 and 60 with an estimated accuracy of 10 dimensions. Remarkably, neither effective
dimensionality nor the ruggedness correlates with protein size and both ruggedness and effective dimensionality
are much smaller than the scatter of protein sizes. From this finding, we conclude that these two properties of the
free-energy landscape of a protein are rather adapted to the particular function of each single protein and that,
quite generally, are functionally relevant for globular proteins.

DOI: 10.1103/PhysRevE.105.044404

I. INTRODUCTION

Most processes in life are governed by proteins, macro-
molecules consisting of a chain of amino acids. Their
biophysical function in living cells is intimately linked to
their structure and, in particular, to their remarkably complex
internal dynamics on timescales ranging from picoseconds to
hours. These thermally activated internal motions are gov-
erned by a diffusion process on a free-energy landscape [1].
Moessbauer spectroscopy and neutron scattering experiments
showed that protein free-energy landscapes with conforma-
tional coordinates as its arguments [2] are characterized by
a large number of nearly isoenergetic minima. Free-energy
barriers between these minima are structured hierarchically,
as shown by flash-photolysis experiments on myoglobin [3]
(see Fig. 1).
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Recent progress in methods and performance of computa-
tional hardware allows generating molecular dynamics (MD)
trajectories ranging over multiple. orders of magnitude in
simulation length up to multiple microseconds as a standard
routine. This development allows us to study the hierarchi-
cal structure of protein free-energy landscapes in silico [4].
However, due to the large number of possible protein configu-
rations, available MD trajectories are still not long enough to
reach thermal equilibrium, which constitutes the well-known
sampling problem of MD simulations. Slowest relaxation
times that correspond to folding and unfolding times are on
the timescale of minutes or even hours, which is still beyond
what MD simulations are capable of simulating on a reason-
able computing timescale.

To circumvent this problem, we use nonequilibrium
methods that, rather than finding a model for a protein’s
equilibrium dynamics, model its dynamics as a diffusion
process within its free-energy landscape. Diffusion processes
in hierarchical free-energy landscapes models were explored
for simple one-dimensional [5] as well as several many-
dimensional models [6,7]. It has been shown that diffusion
in such models is anomalous, i.e., the variance of trajecto-
ries increases with a power law in time [5,8]. In particular,
it was analytically shown how exponents depend on the
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FIG. 1. Hierarchical structure of protein free-energy landscapes
proposed by Frauenfelder [3]. Top: On a large scale, the folding
funnel dominates free-energy landscapes of globular proteins [1].
Within this folding, on a smaller scale, functionally important states
are found. Each of these contains a hierarchy of conformational
substates, where hierarchy tiers i are characterized by mean barrier
heights 〈�Gi〉. Due to the multitude of different isoenergetic con-
formational substates, the free-energy landscape of proteins on this
scale is best described in statistical terms, i.e., in terms of barrier
distributions [12].

barrier-height distribution [5]. Similarly, anomalous diffu-
sion behavior would be expected for hierarchical protein
free-energy landscapes and was indeed observed in MD sim-
ulations of small peptides [9] and small globular proteins [10]
(see Fig. 2). Assuming that the observed anomalous diffusion
behavior arises from the hierarchical structure of protein free-
energy landscapes, it should be possible to estimate barrier
height distributions from anomalous diffusion exponents ob-
tained from MD trajectories.

In this work, we estimated barrier height distributions of
500 small globular proteins selected to cover known folds
and functions from anomalous diffusion exponents observed
in MD simulations. To this end, we generated for each
of these proteins 1-μs molecular dynamics trajectories and
carried out trajectory-length-dependent principal component

FIG. 2. Variance of molecular dynamics trajectories along col-
lective coordinates shows a power-law-like scaling behavior in
dependence of trajectory length. The figure shows the variance of
a 5-μs molecular dynamics trajectory of adenylate kinase from
Escherichia coli (PDB code: 1AKE) along orthogonal collective
coordinates, i.e., principal components (PC) in dependence of trajec-
tory length T . These collective coordinates are (PCA) eigenvectors
of the covariance matrix of the trajectory and are typically ordered
according to the magnitude of their corresponding (PCA) eigen-
values λi, which represent the variance of the trajectory along the
eigenvector. PCA eigenvalues λi of MD trajectories approximately
increase with a power law depending on trajectory length T . The
scaling exponents αi (slopes in a log-log plot) of these power laws
show subdiffusive behavior as αi < 1.

analysis [10] for the selected proteins. To translate the ob-
served anomalous diffusion exponents into barrier height
distributions, we used a d-dimensional hierarchical model.
This model consists of a lattice of states: Transition rates
between adjacent states are governed by static free-energy
barriers �G, which are randomly distributed according to
p(�G) = 1

γ
e−�G/γ , where γ quantifies the “ruggedness” of

the hierarchical free-energy landscape. The relation between
anomalous diffusion exponents and γ is analytically known
only for one-dimensional (1D) models and, in a mean-field
approximation, for high dimensions d → ∞ [8]. However,
because the essential configurational subspace of proteins is
assumed to be ∼10 < d < ∼100) [11], we had to resort to
a numerical approach by simulating random walks in models
with 3–200 dimensions. Indeed, we observed large deviations
from the mean-field approximation. By cross validation, we
showed that, based on this numerically obtained relation, bar-
rier height distributions can be estimated with an accuracy of
∼5 kT.

Applying the same approach to 1-μs MD trajecto-
ries, we determined γ for protein free-energy landscapes.
We found that most ruggedness coefficients of the pro-
teins fall within γ ≈ 15 − 20 kT/d with an estimated
essential subspace dimensionality d ≈ 40 − 60. This re-
sult provides evidence that the dynamics of a broad range
of protein folds is governed by similar barrier height
distributions.
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II. THEORY

To explain nonexponential kinetics, e.g., ligand binding
experiments [3], Frauenfelder proposed early on that, in
the folded state (Fig. 1, top), the underlying intramolecu-
lar protein dynamics is governed by a hierarchical (free)
energy landscape [3] (Fig. 1, bottom and magnification). Ac-
cordingly, the kinetics of larger, typically functional protein
motions are governed by higher free-energy barriers located
at correspondingly larger distances in configurational space
(top sketch in the box of Fig. 1). These barriers separate
“taxonomic conformational states.” Within each of these func-
tional states, increasingly smaller and faster motions between
“statistical substates” [12] are described by more frequent
crossings of increasingly lower barriers separated by corre-
spondingly smaller distances (lower sketches in the box of
Fig. 1). Overall, the protein free-energy landscape is thus
described by a hierarchy of energy barriers with characteristic
barrier heights and separations at each tier. Precisely how
the barrier height increases with increasing mutual distance
between the barriers is described by the ruggedness γ . Hence,
γ determines the subdiffusive dynamics of the protein over
many orders of magnitude [5].

A. Simple hierarchical model free-energy landscape

To relate this subdiffusive behavior to ruggedness γ , we
used a d-dimensional lattice model inspired by the subdiffu-
sive behavior of the simple one-dimensional model [5]. The
near-power-law-type behavior of essential degrees of freedom
of many proteins, as illustrated in Fig. 2, suggests using a
hierarchy of barriers, the heights γ of which are distributed
exponentially,

p(�G) = 1

γ
e−�G/γ . (1)

In this model, shown in Fig. 3(a), the ruggedness γ describes
how the height of the barriers �G increases with increasing
average distance �x between these barriers. Specifically, for
a distance increase by a factor of two, the barrier heights
increase by γ / log(2).

Generalizations to d dimensions have been suggested,
which may be considered as a model for the high-dimensional
protein free-energy landscape, such as in Ref. [6]. Here we
rather choose the model proposed in Ref. [7] because we
expect it to give more isotropic diffusion than the other. This
hierarchical lattice model is a d-dimensional cubic lattice
where exponentially distributed barriers heights (see Fig. 3)
govern transitions between states. Note that the hierarchi-
cal model proposed here is isotropic only on average over
disorder. Each specific realization of a hierarchical model is
anisotropic.

It has been shown that this model exhibits anomalous
diffusion both for one-dimensional and in the limit of high-
dimensional models [8].

For the former, the subdiffusion exponent α is

α = 2

1 + γ
. (2)

FIG. 3. (a) Sketch of a 1D hierarchical model free-energy land-
scape, which is characterized by a lattice of free-energy minima
with equal free-energy separated by barriers with random heights
distributed according to an exponential distribution. With increasing
length scales, highest barrier heights increase on average with a
characteristic height γ . (b) Sketch of a d-dimensional generalization
procedure of a one-dimensional hierarchical model. Whereas the
exponential barrier height distribution is kept, the one-dimensional
lattice is generalized to d-dimensional lattices (2D and 3D cases are
shown).

For high dimensions d , a mean-field approximation [8] yields

α = 2 d

γ
. (3)

This approximation assumes that a random-walk trajectory
never visits any state twice, which is strictly only fulfilled
for d → ∞ and is equivalent [8] to continuous-time random
walks (CTRW) [13]. Because protein dynamics is well de-
scribed by typically tens or hundreds of collective coordinates
[14], we assumed that neither approximation is sufficiently
accurate in this intermediate range and therefore resorted to
studying this model numerically.

B. Determining anomalous diffusion exponents from
MD trajectories

To this end, we followed common practice in protein
dynamics simulations and calculated anomalous diffusion
exponents from trajectory length-dependent principal com-
ponent analysis (tPCA) [9,10]. This approach differs from
traditional analyses of subdiffusion in statistical free-energy
landscapes in that anomalous diffusion exponents are de-
termined from the trajectory length dependence of the

044404-3



ANDREAS VOLKHARDT AND HELMUT GRUBMÜLLER PHYSICAL REVIEW E 105, 044404 (2022)

eigenvalues of the time-averaged covariance matrix,

Ci j (T ) = 1

T

〈∫ T

0
dt [xi(t ) − μi] · [x j (t ) − μ j]

〉
ens

, (4)

rather than time dependence of the ensemble-averaged covari-
ance matrix

Ci j (t ) = 〈
[xi(t ) − μi] · [x j (t ) − μ j]

〉
ens

. (5)

In the above two equations (4) and (5), xi denotes the 3N
Cartesian coordinates of N selected atoms of a protein and
μi = ∫ T

0 dt xi(t ) as well as μi = 〈xi(t )〉ens their corresponding
means. Note that C is by construction a nonnegative sym-
metric matrix and is therefore diagonalizable. Its nonnegative
eigenvalues (“PCA eigenvalues”) λi represent the variance of
a trajectory along corresponding eigenvectors vi (“PCA eigen-
vectors”), which represent collective motions. If λi follows a
power law

λi(T ) ∝ T αi , (6)

then we define anomalous diffusion exponents as αi. For
Brownian motion in the limit of high-dimensional spaces,
it has been shown that this definition is equivalent to the
conventional one derived from Eq. (5) [15].

In the next section, we show that this equivalence also
holds for anomalous diffusion in high-dimensional hierar-
chical lattice models. To that end we first show that the
hierarchical lattice model is equivalent to the well-known
quenched trap model [16] in the limit of high dimensions.

III. SCALING OF PCA EIGENVALUES FOR
HIGH-DIMENSIONAL HIERARCHICAL MODELS

In the limit of high dimensionality d → ∞, the probability
of crossing a particular barrier vanishes as the number of
possible transitions 2d becomes infinite. Hence, the probabil-
ity of returning to a previously visited state which requires
crossing a particular barrier vanishes for infinite-dimensional
hierarchical models.

Due to the vanishing probability of returning to a previ-
ously visited state, random walks in high-dimensional models
are equivalent to random walks where after every step a new
set of 2d free-energy barriers is encountered. Such random
walks are equivalent to continuous time random walks [13],
for which energy barriers determine the waiting time t in
the current state until a barrier crossing event occurs. In the
following we derive a scaling relation for PCA eigenvalues
of random walks that is equivalent to the scaling relation of
the well-studied quenched trap model [16]. To that end, we
decompose the CTRW into two parts, a random walk which
determines the states visited and a waiting time in each of
these states.

It has been shown [15] that PCA eigenvalues of random
walks scale linearly with the number of steps n,

λ(T ) ∝ n(T ). (7)

The total time T = ∑n
i=0 ti is given by the sum of all waiting

times in the individual states, which are random variables.
The waiting time distribution p(t ) within a state depends on
ruggedness γ and dimensionality d and is obtained directly by

a probability transformation of the barrier height distribution
which yields

p(t ) ∝ t1− γ

2d . (8)

For γ /d < 1, waiting times ti have a well-defined expectation
value, such that for n → ∞

T ≈ n 〈ti〉, (9)

λ(T ) ∝ T

〈ti〉 , (10)

which leads to normal diffusion behavior. Anomalous diffu-
sion behavior emerges for γ /2d > 1, because the expectation
value for the waiting times 〈t〉 diverges for n → ∞. However,
for a finite number of transitions n, this expectation value is
also finite and depends asymptotically on T as

〈ti〉 ∝ T 1− 2d
γ . (11)

Inserting this result into Eq. (9) yields the scaling behavior of
PCA eigenvalues in the approximation of high-dimensional
random walks

λ(T ) ∝ T
2d
γ . (12)

For γ /2d > 1 the expectation value for the waiting times
diverges.

IV. METHODS

A. Trajectory length-dependent principal component analysis

Anomalous diffusion exponents αi were determined in a
similar way from both MD trajectories and random-walk
trajectories in hierarchical model free-energy landscapes. To
estimate αi via Eqs. (4) and (6), each trajectory of length T0

was split into 100 windows (nT0) of length T . On each of
these windows, PCA was performed and the resulting set of
PCA eigenvalues was averaged. Ten different time window
lengths T were chosen, distributed exponentially from 100 ps
to 300 ns, such that the overlap of consecutive windows was
below 10% to maximize information content. See the sup-
plementary material [17] for an example distribution of the
PCA eigenvalues for different time window lengths T . For
these data, anomalous diffusion exponents αi were estimated
from the slopes of linear least-squares fits to the logarithm of
window length T and PCA eigenvalues λi.

In case of random-walk trajectories, the number n of PCA
eigenvalues that are sufficiently large depends on the length
of a random walk or trajectory. Due to the limited sampling
in random walks at hand, only the n = 6 largest PCA eigen-
values were larger than 10−5 for the smallest time windows,
which allowed for numerically stable fits. We, therefore, used
only the first six PCA eigenvalues to determine anomalous
diffusion exponents in all of the generated random-walk tra-
jectories.

B. Random-walk generation

We generated 40 000 random walks, each in a separately
generated but static hierarchical free-energy landscape on a
d-dimensional grid. Random walks were generated using the
Gilliespie algorithm [18] with parameter ranges summarized
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TABLE I. Parameter range of random-walk simulations of the
hierarchical free-energy landscape model.

T0 105..12 (trajectory length)

d 3..200
γ /d 3..30 (kT)

in Table I. This algorithm uses Kramers rule [19] to calculate
transition rates r from free-energy barrier heights �G as

r = A exp(−�G/kT ), (13)

where T is the temperature, from which a time-step length t ,
following an exponential distribution p,

p dt = k exp(−k t )dt, (14)

is randomly chosen The prefactor A depends on the shape of
the barriers and wells but can be absored into the barrier height
�G. Therefore, in our random-walk simulations, we set this
prefactor to 1. This also fixes the lattice constant. We also set
diffusion constant and time increments dt to 1. These choices
do not affect the scaling exponents as the absolute time and
length scales determined by those quantities do not contribute
to the scaling behavior.

Due to the high dimensionality of the energy landscapes,
sections of these were generated dynamically on demand. To
this end, for each visited state, adjacent barriers to previously
visited states were recovered from memory, whereas new
adjacent barriers were chosen randomly from the exponen-
tial distribution p(�G) = 1

γ
e−�G/γ and stored [Eq. (1) and

Fig. 1]. The next barrier crossing was chosen as described
in the Gillespie algorithm [18] and the time was advanced
accordingly. The temperature was set to 1 such that barrier
heights and ruggedness γ is given in units of kT in the follow-
ing. For intermediate-dimensional models (d > 10) with high
ruggedness (γ /d > 20 kT), an enhanced sampling algorithm
(see Appendix) was used to generate random-walk trajectories
that were long enough to sample a sufficiently large PCA
subspace.

C. Estimation of the dependence of anomalous
diffusion exponents on ruggedness

To determine which functional form f describes best how
the obtained anomalous diffusion exponents αi decrease with
ruggedness γ , we considered three different plausible func-
tional forms, each pointing to a different underlying process—
an exponential α = f1(γ /d ) = β1 exp[−(γ /d )/β2], a power
law α = f2(γ /d ) = β1 /(γ /d )β2 , and a linear α = f3(γ /d ) =
β1 γ /d + β2 dependence. Here we have used the argument
γ /d rather than γ , because, as will be shown in the results
part, the data suggested normalizing the ruggedness γ by di-
mension d . To assess which of the three functions fits the data
best, we calculated the posterior probability P( f , β1, β2|{αi})
for each of these functional forms f , given {αi}, via a Bayesian
approach,

P( f , β1, β2|{αi}) ∝ P({αi}| f , β1, β2) P( f , β1, β2).

Here the likelihood P({αi}| f , β1, β2) of observing a set of
scaling exponents at a given ruggedness value was described

by a Gaussian distribution

P({αi}| f , β1, β2) ∝ exp

⎧⎨
⎩−

∑
γ /d

∑
i

[αi − f (γ /d )]2

σ 2(γ /d )

⎫⎬
⎭,

(15)

and f (γ /d ) was chosen as the linear, exponential or power-
law function as described above. A constant prior P( f , β1, β2)
was assumed for each parameter of the likelihood function.
The variance σ 2(γ /d ) of the Gaussian probability distribu-
tions was approximated by σ 2(γ /d ) = a · γ /d + b, because
the observed distributions of anomalous diffusion exponents
are well described by a Gaussian distribution, as will be shown
in Sec. V A. We also observed an increase of variance in
anomalous diffusion exponents with increasing normalized
ruggedness γ /d . To determine the two parameters a and b,
we generated 1000 trajectories each for γ /d ∈ 5, 15, 17, and
20 kT, respectively, and calculated the respective variances. To
these, the above linear function was fitted. Posterior probabili-
ties for the function and their two parameters were determined
using Gibbs sampling [20] with 100 000 steps. As starting
points we used a least-squares fit of the respective function
to the observed anomalous diffusion exponents. We discarded
the first 10 000 steps from the sampling to reduce the influence
of the starting parameters.

D. Ruggedness and dimensionality estimates

We proceeded in two steps to estimate ruggedness and
dimensionality for a given αi in the absence of an analytical
expression. First, we estimated the likelihood of observing
anomalous diffusion exponents in random-walk trajectories
which were generated in models with given ruggedness and
dimensionality.

To that end, an eight-dimensional joint kernel density using
a standard kernel density estimator [21] was estimated from
ruggedness γ and dimensionality d parameters as well as
6 PCA eigenvalue anomalous diffusion exponents αi. A multi-
variate Gaussian kernel is placed on each observed data point,
and the normalized sum of all kernels serves as an estimate
for the probability density of observing a set of anomalous
diffusion at given ruggedness and dimensionality values. The
bandwidth of the Gaussian kernels is equal for all data points
and determined such that the variance of the resulting kernel
density has the same value as the sample variance of the data
points.

In a second step, a likelihood p(γ /d, d|{αi}) was estimated
for a range of ruggedness (4 − 30 kT/d with 1 kT steps) and
dimensionality values (3 − 200 dimensions with one dimen-
sion steps) from the joint kernel density as the marginal at
the values of scaling exponents {αi} (here we used the scal-
ing exponents of the first 6 PCA eigenvalues). We estimate
dimensionality and normalized ruggedness from the marginal
distribution using the most likely combination of the consid-
ered parameter ranges.

E. Protein selection

The 500 proteins were selected using the protocol found
in Ref. [22]. In this protocol, nonhomologous proteins were
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(a) (b)

FIG. 4. (a) Dependence of the scaling exponent of the largest PCA eigenvalue α1 on ruggedness γ /d and dimensionality d . The color of
each point represents an average scaling exponent averaged over all simulations with corresponding ruggedness and dimensionality values.
(b) Dependence of anomalous diffusion exponents on ruggedness γ for different ratios of γ /d . Because an exhaustive sampling for all
possible parameter combinations was not possible, we generated for γ /d = 17 kT multiple random walks for specific ruggedeness and
dimensionality values to sample the distribution of α1 rather than generating trajectories equally distributed over the whole range of ruggedness
and dimensionality values. The results of these simulations appear as “vertical” lines in the plot.

selected from the protein data bank (PDB) [23] such that
a large range of small globular proteins with less than
90% sequence identity was retrieved. Only monomeric struc-
tures without gaps consisting of only standard residues were
used. From the remaining protein structures, those contain-
ing polymeric or nonconstitutive ligands were excluded. See
Supplemental Material [17] for a distribution of the sizes of
the selected proteins.

Among the 500 selected proteins, 100 enzymes and nonen-
zymes using the classification available on the protein data
bank were selected to perform three additional 1-μs MD sim-
ulations.

F. Generation of MD trajectories

For each of the 500 selected proteins, MD simulations were
performed using the simulation package software GROMACS
2018 [24]. Starting structures were obtained as described
above in Sec. IV E. Solvent (TIP4P-Ew water model [25])
and ions (Na+ and Cl−) were added, establishing a salt con-
centration of 0.15 mol l−1 and neutralizing the overall system
charge. A triclinic box with periodic boundary conditions was
used with a 1.5-nm distance between solute and box bound-
ary. Prior to each simulation run, energy minimization was
performed using the GROMACS steepest descent algorithm
until convergence was reached. This energy minimization was
followed by a 1-ns (NPT) MD simulation to equilibrate the
system. After energy minimization and equilibration a 1-μs
MD trajectory was generated for each protein using Am-
ber99*ildn force field [26] with a 2.5-fs time step with virtual
sites [27]. All bond lengths were constrained, using the Settle
algorithm [28] for the solvent and Lincs algorithm [29] for
the solute, with a Lincs order of 4 during energy minimization
and equilibration and 6 in the production run. Van-der-Waals
forces were ignored for distances > 1 nm and Coulomb forces
were calculated using the particle mesh Ewald method [30]

with a real-space cutoff of 1 nm, PME order of four, and a
Fourier grid spacing of 1.2 Å.

For 200 of the selected proteins comprising 100 enzymes
and 100 nonenzymes, three additional microsecond trajecto-
ries were calculated following the same protocol to estimate
the statistical uncertainty of the determined ruggedness and
dimensionality.

V. RESULTS AND DISCUSSION

A. Anomalous diffusion in intermediate-dimensional
hierarchical models

Using random-walk trajectories, generated as described
in Sec. IV B, we first determined how anomalous diffusion
exponents depend on the ruggedness and dimensionality of
the hierarchical lattice model shown in Fig. 4. Almost normal
diffusion (α = 1) is seen for small ruggedness parameters γ ,
with increasingly strong subdiffusion (α < 0.1) for larger γ

as shown in Fig. 4(a). Notably, similar α are seen for regions
of similar γ /d ratios as shown in Fig. 4(b).

For an explanation of this behavior, note that a trajectory
is dominated by crossings of the lowest barriers �Gmin. For
the hierarchical lattice model, it follows from Eq. (1) that for
each visited state, the lowest of the 2d adjacent barriers is
distributed as

p(�Gmin) = 2d

γ
exp

(
−2d �Gmin

γ

)
. (16)

As this distribution is a function of γ /d , similar anomalous
diffusion exponents are expected for equal ratios of γ /d . This
idea also explains why strong subdiffusion is only observed
for unexpectedly high γ , particularly for large dimension-
alities d . This finding motivates the use of this ratio or
“normalized” ruggedness as an argument for the functional
dependence α(γ /d ) further below.
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FIG. 5. Distributions of scaling exponents of the first four PCA
eigenvalues α1 (top left), α2 (top right), α3 (bottom left), and α4

(bottom right) in dependence of ruggedness γ /d . Probabilities of
observing an anomalous diffusion exponent at a given ruggedness
value are represented by violins. The dashed black line indicates the
mean-field approximation.

Next, we compared our numerically obtained anomalous
diffusion exponents α to the mean-field approximation and
asked how accurately γ /d can be estimated from α. To that
aim, Fig. 5 shows, as a violin plot for the largest four PCA
eigenvalues, how much scaling exponents α scatter when
derived from single trajectories for different landscapes as a
function of γ /d . Note that the considerable width of these
distributions results not only from the stochastic nature of the
individual trajectories and the underlying energy landscapes

but also from their different ruggedness and dimension for
given γ /d . As expected, increasing subdiffusion is seen for
increasing γ /d . For the smaller eigenvalues and small γ /d ,
some superdiffusion is seen as was already explained in terms
of ballistic motion [15]. Overall, much weaker subdiffusion
is seen compared to the mean field approximation (dashed
lines), with decreasing discrepancy for larger dimensions, as
also expected. Scaling exponents of large PCA eigenvalues
decrease faster with increasing γ /d and show a lower vari-
ance, mainly due to better sampling of these coordinates.
Notably, the shown scatters generally exhibit large overlaps
for adjacent γ /d values, particularly for larger γ /d , which
suggests that reconstructions of ruggedness and dimension
from subdiffusion exponents α involve considerable uncer-
tainties. These will be explored further below.

As our observed anomalous diffusion exponents deviate
considerably from the functional relation 3 derived in a
mean-field approximation (black dashed line in Fig. 5), we
asked which function f (γ /d ) describes the observed mean
anomalous diffusion exponents best. As functional forms, we
considered a power law (see caption of Fig. 6) as the gen-
eralization of the mean-field result, an exponential decay as a
plausible alternative, and a linear function for comparison. For
these three functional forms, posterior probabilities obtained
via Gibbs sampling (see methods) are shown in Fig. 6(a). As
an example, Fig. 6(b) shows the posterior distributions for the
respective parameters (β1, β2) for the exponential function.
As can be seen in the figure, the highest posterior probability
is obtained for the exponential function and in that sense
describes our numerical results the best among the three con-
sidered functions. Remarkably, the power law, for which the
mean-field theory Eq. (3) is a special case for β1 = 2, β2 = 1,
turns out to be the least probable, which suggests that a simple
modification of the mean-field theory will most likely not
suffice for a quantitative explanation of the anomalous diffu-
sion exponents. We conclude that the underlying assumption
that no trajectory visits any state twice most likely does not
provide a good approximation for intermediate-dimensional
models.

FIG. 6. (a) Distributions of anomalous diffusion exponents (raw data) shown as violin histograms depending on γ . Average scaling
exponents are shown as thick blue lines. Colored lines show the average fit function for three selected functional forms, i.e., exponential (blue),
power law (green) and linear(red), of the relation between mean scaling exponent 〈α1〉 of the first PCA eigenvalue and γ /d based on the scaling
exponent distributions of generated random walks. (b) Box plots of posterior probabilities of exponential α = f1(γ /d ) = β1 exp[−(γ /d )/β2]
(blue), power law α = f2(γ /d ) = β1 /(γ /d )β2 (green), and linear α = f3(γ /d ) = β1 γ /d + β2 (red) functions obtained from a Gibbs
sampling. (c) Kernel density plot of the distribution of posterior probability of the two parameters of the exponential function.
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(a) (b)

FIG. 7. Error estimates of ruggedness and dimensionality using cross validation. For each ruggedness value, 100 random-walk trajectories
were randomly chosen, from which ruggedness and dimensionality of the corresponding intermediate-dimensional hierarchical model were
estimated using a maximum likelihood estimator. (a) Dependence of the error in ruggedness estimates on ruggedness γ /d . Errors in ruggedness
estimates for individual random-walk simulations are shown as blue dots; their density is shown as green contours. The mean error (red line)
of the ruggedness estimates increases with higher ruggedness values, but is similar to the error estimated from the kernel density (black
dashed line). (b) Dependence of the error in dimensionality estimates on dimensionality. Colors and symbols are as in (a). The mean error in
dimensionality estimates shows no clear dependence on dimensionality. Gaussian noise with 1% variance was added to shown points in both
plots for visualization purposes.

However, although the exponential function fits the data
best, it is only a slightly better description of the numerical
anomalous diffusion exponents (see colored lines in Fig. 6).
Therefore, we did not use any of these three functions to
extract ruggedness and dimensionality from the anomalous
diffusion exponents extracted from protein MD simulations
further below, but rather resort to a probabilistic approach.
To that end, we used a kernel density estimator to model
the joint probability density of anomalous diffusion exponents
α1, . . . , α4, γ /d , and d as observed in a total of 40 000 random
walks (see Sec. IV A). This probability density will serve to
obtain distributions of γ /d and d for given α1, . . . , α4 by
marginalization.

Before discussing the obtained γ /d and d , we used 2200
trajectories to estimate the uncertainty of these values by two
independent approaches, from the variance of the marginal-
ized distribution of γ /d and d via cross validation. Figure 7
shows for each of the trajectories (blue dots) the actual error
of the estimate, i.e., the deviation of the estimated normalized
ruggedness [Fig. 7(a)] and dimensionality [Fig. 7(b)] from
their known values that were used to build the respective
underlying energy landscapes. For comparison, the average
error estimate obtained from the marginalized distributions is
shown as a black dashed line. In addition, the red line shows
the cross validation in terms of the average actual error for
100 trajectories with the same ruggedness (or dimensionality)
values, which have not been used for the training of the kernel
density. We obtained an overall mean error of 4.2 kT for the
ruggedness estimate and 10 dimensions for the dimensionality
estimate. The mean relative error of ruggedness estimation
is moderate and increases with increasing ruggedness as ex-
pected, whereas the mean relative error of dimensionality

estimates is substantially larger and independent of dimen-
sionality. Overall, the hierarchical lattice model suggests that
it should be possible to estimate the ruggedness of proteins
rather reliably from anomalous diffusion exponents that were
obtained via trajectory length-dependent principal component
analysis of atomistic simulations.

B. Anomalous diffusion in realistic protein
free-energy landscapes

To this end, we used the above probabilistic model to
explore ruggedness and dimensionality of the free-energy
landscapes of 500 small globular proteins selected to cover
known folds and functions as described under Sec. IV E.
We carried out a 1-μs MD simulation for each of these
500 proteins and performed a tPCA for each of the trajectories
as described under Sec. IV A. From least-squares fits to the
trajectory length-dependent largest eigenvalue scaling expo-
nents α1 were obtained. Figure 8(a) shows the distribution of
scaling exponents jointly as a function of protein size (number
of Cα atoms N) as described by the dimension dconf = 3N
by the respective configurational space. As can be seen, al-
most all of the obtained scaling exponents show subdiffusion
(α1 < 1). In fact, ca. 90% of the scaling exponents are smaller
than 0.6 and the mean anomalous diffusion exponent is 0.3.
Remarkably, no significant correlation between α1 and config-
uration space dimensionality dconf is seen (Pearson correlation
coefficient c = 0.12).

Using these anomalous diffusion exponents, we estimated
the ruggedness γ and effective dimensionality d of the
500 protein free-energy landscapes via the above probabilistic
model. Figure 8(c) shows the distribution of dimensionality
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(a) (b) (c)

FIG. 8. (a) Subdiffusion exponents α1 as a function of configuration space dimensionality obtained from MD trajectories of 500 small
globular proteins with configuration space dimensionality dconf = 3N , where N is the number of Cα atoms. (b) Estimated effective dimen-
sionality d and configuration space dimensionality. (c) Frequency of dimensionality and ruggedness estimates of 500 small globular proteins
obtained from microsecond molecular dynamics simulation.

and ruggedness estimates of γ /d and d , where the ruggedness
has been normalized by the effective dimension as suggested
for the simple hierarchical grid model and shown in Fig. 4.

As can be seen, ruggedness values between 15 and 20 kT
per dimension dominate, as well as effective dimensionalities
d between 40 and 60. This result is reproducible for four in-
dependent sets of MD simulations of a test set of 200 proteins
as described under Sec. IV E. For this test set, an average
standard deviation of 1.1 kT for ruggedness and 4.8 dimen-
sions for the dimensionality was obtained, which is lower
than the expected error from our random-walk simulations.
We attribute these low errors to the fact that MD simulations
were started from the same starting structure and therefore ex-
plore similar regions in their free-energy landscape, whereas
in the case of the hierarchical lattice model, each trajectory is
simulated in a different free-energy landscape.

The high estimated ruggedness values suggest that most
free-energy barriers are not crossed. Indeed, Fig. 9 shows that

the crossed barriers in random walks in hierarchical model
free energy landscapes with protein-typical ruggedness and
dimensionality values range between 5 and 6 kT. Values in
this range were also observed in flash photolysis experiments
on myoglobin.

Unexpectedly, despite the fact that there is no correla-
tion between the ruggedness coefficient and the protein size,
Fig. 8(c) shows a strong correlation between normalized
ruggedness γ /d and effective dimensionality d (Pearson cor-
relation coefficient c = 0.21). We asked if this correlation is
due to a possible correlation between protein size and effective
dimensionality. However, no such correlation is seen in the
respective scatter plot [Fig. 8(b), Pearson correlation coeffi-
cient c = 0.09]. Taken together, these results suggest that both
the effective dimensionality and normalized ruggedness of a
protein do not depend on its size and rather are adapted to
the particular function of each single protein. Furthermore, it
is remarkable that the ranges of both normalized ruggedness

(a) (b)

FIG. 9. (a) Distributions of barrier heights of three states of myoglobin (A0, A1, A2) estimated from flash photolysis experiments [12] (b).
Boxplots of distributions of barrier heights δGcrossed that were crossed in random walks in intermediate-dimensional hierarchical lattice models
with typical ruggedness and dimensionality as estimated for the selected proteins (40 − 60 and 15 − 20 kT per dimension).
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and effective dimensionality (by a factor of about 1.5) are
much smaller than the scatter of protein sizes (by a factor of
ca. 5) among the selected 500 proteins. This finding suggests
that, quite generally, these narrow ranges are optimal for the
function of essentially every protein.

VI. CONCLUSION

In this work, we developed a method to connect simple
hierarchical free-energy lattice models to atomistic simula-
tions of biological macromolecules. To this end, we have
characterized the high-dimensional free-energy landscape of
500 small globular proteins in terms of effective dimension-
ality and distribution of free-energy barrier heights. These
quantities have been obtained from anomalous diffusion
exponents observed in microsecond molecular dynamics tra-
jectories of these proteins.

For the hierarchical free-energy lattice model, we assumed
an exponential distribution p(�G) ∝ exp(−�G/γ ) of static
barrier heights, where γ denotes the “ruggedness” of the
energy landscape, similar to a disorder temperature. While
analytic expressions have been derived for one-dimensional
[6] and high-dimensional lattices [8], we are not aware of any
result for the intermediate effective dimensions relevant for
biomolecules; we therefore resorted to a numerical approach.

To this end, we carried out random-walk simulations and
found indeed anomalous diffusion exponents that deviate
from both the one-dimensional and high-dimensional limiting
cases. A Bayesian analysis showed that, overall, anomalous
diffusion exponents decrease less steeply with increasing
ruggedness and most likely not by the inverse-law of the two
limiting cases. These significant deviations suggest different
mechanisms from which anomalous diffusion behavior arises.

In the limit of infinite dimensions, random walks are equiv-
alent to high-dimensional CTRW, for which no state is visited
more than once and therefore the mean-field description is
accurate. In particular, the probability of returning to a pre-
viously visited state approaches zero. As a result, anomalous
diffusion in CTRWs is caused by waiting time distributions
that are heavy-tailed (i.e., diverging averages) [31] and dom-
inated by a few extreme waiting times in states enclosed by
high barriers. In contrast, for the intermediate-dimensional
models discussed here, recrossings were observed with con-
sequences, the analysis of which is beyond the scope of this
work. Based on our observations (data not shown), we specu-
late that the anomalous diffusion in intermediate-dimensional
models most likely originates—similarly to the 1D case—
from high free-energy barriers confining random-walk tra-
jectories to a region in conformational space. However,
anomalous diffusion in intermediate-dimensional models dif-
fers from that of 1D models in that, due to the higher
dimensionality of these regions, high free-energy barriers are
circumvented. This effect results in a fractallike topology
of the subregion actually accessed by trajectories [9]. This
scenario is also supported by our observation that the height
distribution of actually crossed barriers is much lower than the
overall barrier distribution of the free-energy landscape.

In that sense, this study reveals a connection of the two
main conceptual frameworks explaining anomalous diffusion
in protein dynamics, diffusion on fractal geometries and hier-

archical free-energy landscapes. Specifically, we have shown
that, for intermediate dimensionality, fractallike topologies
of accessible configurational space arise necessarily from
dynamics in hierarchical energy landscapes with very high
ruggedness.

Using our numerical results, we asked how accurately
ruggedness and dimensionality can be estimated based on
anomalous diffusion exponents obtained from nonequilibrium
trajectories. For the hierarchical lattice model, we showed via
cross validation that a maximum likelihood estimate yields an
accuracy of 4.2 kT for ruggedness and 10 dimensions for the
effective dimensionality.

This result enabled us to use our method to estimate
ruggedness and dimensionality based on anomalous diffusion
exponents which we calculated from MD trajectories of a
total of 500 small globular proteins. We obtained typical
ruggedness estimates in the range of 15 − 20 kT per dimen-
sion and effective dimensionality of 40–60. The robustness
of the ruggedness and dimensionality estimates for three
independent MD simulations shows that the intermediate-
dimensional hierarchical model indeed captures features of
protein free-energy landscapes that govern the anomalous dif-
fusion behavior in protein dynamics. The range of heights of
crossed barriers in hierarchical models with protein-typical
ruggedness and dimensionality values agrees with experi-
mentally observed barrier distributions. See the Supplemental
Material [17] for an example of ruggedness and dimensional-
ity estimates of a 50-μs trajectory, indicating that our results
are also robust with respect to increasing trajectory lengths.

There are two main assumptions in applying our hierarchi-
cal model to protein dynamics. The first assumption is that
the free energies of all minima are equal, such that, except for
the barriers, the protein free-energy landscape is essentially
flat. This assumption only holds for the short timescale protein
dynamics studied here by atomistic simulations, and also only
for the essential and slow degrees of freedom identified via
PCA. For longer timescales, the “walls” of the folding funnel,
which stabilizes the folded structure of a protein, restrict the
dynamics, which would result in a levelling off of the largest
PCA eigenvalues for these long timescales. Because we did
not observe such this effect for the largest PCA eigenvalues
that we used to compare with the hierarchical model (and only
for smaller PCA eigenvalues of the smallest considered pro-
teins), we think that, for the microseconds dynamics studied
here, this assumption is justified. On much longer timescales,
where the folding funnel does affect protein dynamics along
large PCA modes, the levelling off of the PCA values would
result in a smaller anomalous diffusion exponent and, hence,
an overestimate of the ruggedness of proteins.

The second assumption is that the protein dynamics within
the essential conformational subspace that is spanned by the
largest eigenvectors is governed by a hierarchical free-energy
landscapes that has, on average, an isotropic barrier height
distribution, whereas it would certainly be possible to include
anisotropic barrier height distributions, we do not consider
it necessary. The reason is that anisotropic barrier height
distributions would imply different diffusion exponents for
different principal components, which we did not observe
at the level of sensitivity achieved by our analysis of our
microseconds atomistic simulations.
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It is remarkable that neither the effective dimensionality
nor the ruggedness correlates with protein size, whereas there
is a significant correlation between effective dimension and
ruggedness. Further, the ranges of both normalized rugged-
ness and effective dimensionality are much smaller than the
scatter of protein sizes (by factors of about 1.5 and 5, respec-
tively) among the selected 500 proteins.

In fact, the broad range of different protein structures, sec-
ondary structure arrangements, and architectures with quite
different dynamic properties that is reflected even in the
set of 500 small globular proteins we have selected for out
analysis, should imply quite different protein dynamics for
different proteins. Accordingly, one would expect that par-
ticularly their ruggedness and effective dimensionalities show
correspondingly broad distributions—which, however, are not
seen. Similarly, no correlation between normalized rugged-
ness and effective dimensionality would be expected a priori.
These findings suggest, in our view as the most likely ex-
planation, an evolutionary pressure on these observables. In
particlular, it is plausible that it is evolutionarily favorable
for free-energy landscapes of proteins with a higher effective
dimensionality to also exhibit a higher effective ruggedness to
achieve tightly coordinated dynamics of functionally relevant
degrees of freedom. Also, Although the precise functional
advantage is unclear to us, we speculate that a more rugged
free-energy landscape may kinetically stabilize the structure
of larger proteins by slowing down the diffusion process in
configuration space, hence rendering the folded state more
long-lived and less prone to protein degradation.

Taken together, our results suggest that both, ruggedness
and effective dimensionality of protein dynamics free-energy
landscapes are adapted to the particular function of each single
protein, and that, quite generally, these narrow ranges are
optimal for the function of essentially every small globular
protein.

APPENDIX: ENHANCED SAMPLING FOR RANDOM
WALK GENERATION

For ruggedness values γ /d > 20 we found that random-
walk trajectories are confined to a small number of states such

that only a few degrees of freedom are sampled. In this cased,
we used an enhanced sampling method, similar to Gilliespie’s
algorithm [18], to reach timescales to escape from such con-
finement regions to enable sampling in multiple dimensions.
Instead of sampling transitions within a confinement region,
we estimate the probability of the number of transitions n
until an escape event occurs and use accordingly distributed
samples as numbers of transitions. The probability of es-
caping pesc a confinement region is given by the probability
of occupying a boundary state μi and the probability pi j of
transitioning from state i to a state j which is outside of the
confinement region is

pesc =
∑
i∈	

μi

∑
j /∈V

pi j,

where 	 is the set of states at the confinement region bound-
ary, V is the set of all states in the confinement region. If the
confinement region is stable enough, the number of transitions
before leaving are memoryless,

Pr(n > s + t |n > s) = Pr(n > t ).

Therefore, escape attempts are statistically independent events
and the number of transitions n within a confinement region
until an escape event occurs are exponentially distributed as

p(n) ∝ (1 − pesc)n−1 pesc ≈ elog(1−pesc ) n. (A1)

Assuming a sufficient amount of transitions within a confine-
ment region, we estimate μi as the fraction of visits of state i
and the total amount of transitions. We use random numbers,
distributed according to (A1), to estimate the number of tran-
sitions within the confinement region. Because time averages
are independent of the order in which states are visited, the
number of visits to each state nμi is sufficient to calculate the
time-averaged covariance matrix. The next state j outside of
a confinement region is determined with probability

p j =
∑

k∈	 pk j∑
l∈	̄

∑
k∈	 pkl

, (A2)

where 	̄ is the set of states outside of the confinement region
with a connection to its boundary.
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