
GROMACS in the Cloud: A Global Supercomputer to Speed Up
Alchemical Drug Design
Carsten Kutzner,* Christian Kniep,* Austin Cherian, Ludvig Nordstrom, Helmut Grubmüller,
Bert L. de Groot, and Vytautas Gapsys*

Cite This: J. Chem. Inf. Model. 2022, 62, 1691−1711 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We assess costs and efficiency of state-of-the-art high-
performance cloud computing and compare the results to traditional
on-premises compute clusters. Our use case is atomistic simulations
carried out with the GROMACS molecular dynamics (MD) toolkit
with a particular focus on alchemical protein−ligand binding free
energy calculations. We set up a compute cluster in the Amazon
Web Services (AWS) cloud that incorporates various different
instances with Intel, AMD, and ARM CPUs, some with GPU
acceleration. Using representative biomolecular simulation systems,
we benchmark how GROMACS performs on individual instances
and across multiple instances. Thereby we assess which instances
deliver the highest performance and which are the most cost-efficient
ones for our use case. We find that, in terms of total costs, including
hardware, personnel, room, energy, and cooling, producing MD
trajectories in the cloud can be about as cost-efficient as an on-premises cluster given that optimal cloud instances are chosen.
Further, we find that high-throughput ligand-screening can be accelerated dramatically by using global cloud resources. For a ligand
screening study consisting of 19 872 independent simulations or ∼200 μs of combined simulation trajectory, we made use of diverse
hardware available in the cloud at the time of the study. The computations scaled-up to reach peak performance using more than
4 000 instances, 140 000 cores, and 3 000 GPUs simultaneously. Our simulation ensemble finished in about 2 days in the cloud,
while weeks would be required to complete the task on a typical on-premises cluster consisting of several hundred nodes.

1. INTRODUCTION

Over the past decades, molecular dynamics (MD) simulations
have become a standard tool to study biomolecules in atomic
detail. In the field of rational drug design, MD can greatly
reduce costs by transferring parts of the laboratory workflow to
the computer. In the early stage of drug discovery, large
libraries of small molecules with the potential to bind to the
target protein (the “hits”) are identified and subsequently
modified and optimized to ultimately uncover more potent
“lead” candidates. In silico approaches allow reducing the
number of small molecule compounds from tens of thousands
down to a few hundred entering preclinical studies.
Naturally, it is a combination of all the pharmacokinetic and

pharmacodynamic features that defines whether a candidate
molecule can be evolved into a useful drug. Molecular
dynamics-based computational drug development concentrates
mainly on the particular question of how well a specific ligand
binds to a target. While calculations of absolute protein−ligand
binding affinity are feasible, they also present numerous
technical challenges.1,2 Evaluation of the relative binding
affinities, however, is much more tractable and in recent years

has been well-established in the field of computational
chemistry.3−6 In the latter approach, MD-based so-called
alchemical calculations allow obtaining differences in binding
free energy between two ligands. Such calculations require
performing transformations between the two ligands for their
protein-bound and for their unbound solvated state. Carrying
out multiple transformations allows sorting the whole
collection of ligands by their binding affinity to the target.
Different approaches can be used to carry out the trans-
formations, but they all involve a λ parameter that interpolates
between the ligands. An automated workflow for binding
affinity calculations has recently been developed,5 based on the
open-source software packages pmx7 and GROMACS.8
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Despite continuous advances in hardware and software,
carrying out MD simulations remains computationally
challenging. A typical MD project can easily occupy a modern
compute cluster for days or even months until a sufficient
amount of simulation trajectory is produced.
Where now does a researcher get the required compute

time? Established providers are the compute centers of
universities and research institutes, national supercomputing
centers, and local clusters, each with particular advantages and
disadvantages with respect to how easily resources can be
accessed, how much and how quickly they are available, what
the costs are, etc. During the past decade, cloud computing9,10

has developed into a new, alternative option to obtain compute
time for scientific applications.
Whereas the first systems of cloud computing reach back

into the mid-1990s,11 since about 2007, it is being increasingly
used for scientific workloads.12−16 Cloud computing providers
like Amazon Web Services (AWS), Microsoft Azure, or Google
Cloud Platform can serve both HPC and HTC demands as
they nowadays offer virtually limitless compute power, plus the
possibility to efficiently parallelize individual simulations over
multiple instances (compute nodes in the cloud) connected by
a high-performance network.
One of the main promises of cloud-based computing is its

ability to easily scale-up when the resources for computation
are required. This way the user has access to an HPC/HTC
facility which can flexibly adjust to the particular needs at a
given time. Consequently, the usage of such cloud compute
clusters can be fine-tuned to optimize costs or minimize the
time-to-solution.
The Folding@home project, initiated in 2000, was the first

to leverage globally distributed compute resources for MD on a
large scale.17 Reports of cloud infrastructure in the narrow
sense being used for MD date back to 2012. Wong et al.
developed a VMD18 plugin for the NAMD19 simulation
software that simplifies running simulations in the AWS Elastic
Compute Cloud (EC2).20 They carried out a simulation of a
one million atom large biomolecular system on a total of 64
CPU cores spread over eight EC2 instances. Van Dijk et al.
implemented a web portal to execute large-scale parametric
MD studies with GROMACS8 on European grid resources.21

In 2014, Kroĺ et al. performed an ensemble simulation of 240
replicas of a several hundred atom large evaporating nano-
droplet on 40 EC2 single-core instances.22 Kohlhoff et al.
demonstrated that long simulation time scales for biomolecules
can be accessed with the help of cloud computing. They
simulated two milliseconds of dynamics of a major drug target
on the Google Exacycle platform.23 Singharoy et al. described
tools to easily perform MD-based flexible fitting of proteins
into cryo-EM maps in the AWS cloud.24

The concept of making cloud-based workflows for MD
readily available to the scientist is also pursued by the following
projects. The AceCloud25 on-demand service facilitates
running large ensembles of MD simulations in the AWS
cloud; it works with the ACEMD,26 GROMACS, NAMD, and
Amber27 simulation packages. QwikMD28 is a user-friendly
general MD program integrated into VMD and NAMD that
runs on supercomputers or in the AWS cloud. HTMD29 is a
python-based extensible toolkit for setting up, running, and
analyzing MD simulations that also comes with an AWS
interface. A purely web-based application that facilitates setting
up MD simulations and running them in the cloud is described
by Nicolas-Barreales et al.30 The Copernicus31 scientific

computing platform can be used to carry out large sets of
MD simulations on supercomputers and cloud instances. In a
hands-on fashion, Kohlhoff describes how to perform
GROMACS simulations on Google’s cloud platform using
Docker containers.32 Arantes et al. propose a Jupyter-notebook
based, user-friendly solution to perform different kinds of MD-
related workflows at no cost using the Google Colab services,
which is especially useful for teaching purposes.33

Cloud computing is also increasingly being adopted to aid
drug discovery. In their 2013 article,34 Ebejer et al. review the
use of cloud resources for protein folding and virtual screening
and highlight the potential for future large-scale, data-intensive
molecular modeling applications. They point out a virtual
screening study of 21 million compounds that has been carried
out in 2012 on a cloud-based cluster with 50 000 cores using
Schrödinger’s docking software Glide.35 D’Agostino et al.
discuss the economic benefits of moving in silico drug
discovery workflows to the cloud.36 A recent virtual screening
study of 1 billion compounds against proteins involved in
SARS-CoV-2 infection was carried out on Google’s cloud
services.37

Cloud computing has been compared to traditional on-
premises clusters for exemplary scientific workflows;38,39

however, we are unaware of a quantitative study to date for
the field of MD simulation. Therefore, here we assess the costs
and performance of cloud computing for carrying out
biomolecular simulations. We use GROMACS as the
simulation engine and AWS as the provider of cloud
infrastructure for this case study, for the following reasons:
GROMACS is open source and freely available to anyone, and
it is one of the fastest MD codes available.40 AWS is one of the
largest providers of cloud infrastructure, on par with Microsoft
and Google.10

First, we measured the GROMACS performance using
established benchmarks41 on a broad range of available
instance types (with and without GPUs) and also across
multiple instances. The simulation performance-to-instance
price ratio allows optimizing for a minimal time-to-solution or
minimal project costs. The benchmark results and the instance
costs allowed us to compare the costs of carrying out
simulations in the cloud to those for operating an in-house
cluster. Second, we ask how much high-throughput ligand
screening can be accelerated in the cloud. To address this
question, we used globally available compute capacity to carry
out a large protein−ligand binding affinity study at highest
possible throughput.

2. GENERAL BACKGROUND
2.1. Cloud Computing. The large cloud providers offer a

wide range of instance types, with and without GPUs,
optionally with extra memory or HPC network, targeted
toward different application areas. Because of the sheer scale of
options, cloud resources can appear overwhelming at first,
especially compared to an on-premises HPC cluster with
preinstalled software. To help setting up typical workflows and
to illustrate best practices, plenty of online content is available
such as manuals, tutorials, workshops and discussion forums.
In addition, an experienced technical staff is available to
directly help with specific issuesa support that this project
has greatly benefited from.
The compute unit that is rented out to customers is called

instance. It may be a whole node with multiple cores and
GPU(s), just a part of a node, or even just a single core.
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Large nodes that are rented out as several smaller instances
are shared between different customers. However, each
customer is restricted to her instance (her part of the node)
exclusively, and her processes cannot spill over into the
compute cores, memory, or network bandwidth allocated to
other instances on the node. AWS instances come with a
certain number of virtual CPUs (vCPUs) which translate to
hardware threads. Renting two vCPUs on a modern AMD or
Intel-based instance is equivalent to getting one physical core
exclusively on that machine.
Although the actual exact location of allocated compute

instances remains opaque to the user, the region she chooses
encompasses a group of geographically close data centers.
Costs usually vary by region, depending on supply and
demand, as well as energy costs, and specific services or cutting
edge processor features may be available only in some of the
regions. For the case of AWS, each region consists of multiple,
isolated, and physically separate availability zones (AZs) within
a geographic area. An AZ is a group of one or more data
centers with independent redundant power supply and
network connectivity. In 2021, AWS had 85 AZs in 26 regions.
There are different payment models that can be chosen

from. On-demand payment is most flexible, as one can rent an
instance at any time and give it back when it is not needed any
more. One pays only for the time that the instance is needed.
One can also get reserved instances at a 50−70% discount if one
books these instances for one to three years, but then one has
to pay regardless if one can make use of them. Preemptible or
Spot instances tap into the pool of currently unused compute
capacity and are available at discount rates of up to 90%
compared to on-demand, though pricing varies across AZs and
over time. However, a Spot instance can be claimed back at
any time by Amazon EC2 with a 2 min warning.
2.2. Using Hardware Efficiently with GROMACS. Key

to optimal simulation performance is understanding how
GROMACS makes use of the available hardware. GROMACS
combines several parallelization techniques, among them MPI
and OpenMP parallelism, GPU offloading, and separable ranks
to evaluate long-range electrostatics. With domain decom-
position (DD), the simulation system is divided into nx × ny ×
nz domains, each of which is operated on by one MPI rank.40

During the simulation, dynamic load balancing (DLB) adjusts
the size of the domains such that any uneven computational
load between the MPI ranks is minimized.
Each MPI rank can further have multiple OpenMP threads.

Best performance is usually achieved when the product of MPI
ranks and OpenMP threads equals the number of cores (or
hardware threads) on a node or instance and when all threads
are properly pinned to cores. Though leaving some cores idle
may in rare cases make sense, oversubscription will lead to
significant performance degradation.
When distributing a simulation system over an increasing

number of MPI ranks in a strong scaling scenario, at some
point the time spent for communication between the ranks
limits further speedup. Usually the bottleneck is in the long-
range contribution to the electrostatic forces which are
calculated with the particle mesh Ewald (PME) method.42

Parallel PME requires all-to-all communication between the
participating ranks, leading to r2 MPI messages being sent on r
MPI ranks.40 This communication bottleneck can be alleviated
by assigning a subset of MPI ranks to exclusively evaluate the
long-range PME part. As typically only a quarter up to a third
of all ranks need to be allocated for long-range electrostatics,

the communication bottleneck is greatly reduced, yielding
better performance and scalability.
GROMACS can offload various types of computationally

demanding interactions onto the GPU.41,43,44 One of the
largest performance benefits stems from offloading the short-
range part of the nonbonded interactions (Coulomb and van
der Waals). In parallel, each MPI rank can offload its local
domain’s interactions to a GPU. The PME long-range part can
be offloaded as well; however, this computation still cannot be
distributed onto multiple GPUs. Additionally, bonded
interactions and for suitable parameter settings the integration
and constraint calculations can be offloaded.
The relative GPU-to-CPU compute power on a node

determines how many interaction types can be offloaded for
optimal performance. Ideally, CPU and GPU finish their force
calculation at about the same time in the MD time step so that
no time is lost waiting.
Earlier studies showed that both the GROMACS perform-

ance as well as the performance-to-price (P/P) ratio, i.e., how
much MD trajectory is produced per invested €, can vastly
differ for different hardware.41,45 Nodes with GPUs provide the
highest single-node GROMACS performance. At the same
time, P/P skyrockets when consumer GPUs are used instead of
professional GPUs (e.g., NVIDIA GeForce RTX instead of
Tesla GPUs). The P/P ratio of consumer GPU nodes is
typically at least a factor of 3 higher than that of CPU nodes or
nodes with professional GPUs.
Pronounced variations in GROMACS performance and

cost-efficiency are therefore expected between the different
instance types on AWS. Benchmarks allow picking instance
types optimal for MD simulation.

2.3. Obtaining Relative Binding Free Energies from
MD Simulations. To evaluate relative binding affinities in a
chemical library of interest, ligands are connected into a
network (graph) and a number of pairwise calculations is
performed, eventually allowing the sorting of the molecules
according to their binding free energy. It is a usual practice to
repeat calculations several times for each ligand pair to obtain
reliable uncertainty estimates.46−48

Various methods for the alchemical calculations have been
developed. For example, the commercially available Schrö-
dinger software uses a free energy perturbation-based
approach,49 whereas the open source workflow used here5,7

is based on thermodynamic integration (TI)50 using a
nonequilibrium transformation protocol.51 Both approaches
yield similarly accurate relative binding free energies at similar
computational effort.5

The nonequilibrium TI approach requires equilibrated
ensembles of the physical end states for the solvated protein
with ligand, one for ligand A and one for ligand B, as well as
two equilibrated ensembles of ligand A and ligand B in
solution. From the equilibrated ensembles, many short “fast
growth” TI simulations are spawned during which ligand A is
transformed into ligand B and vice versa using a λ-dependent
Hamiltonian. The free energy difference is then derived from
the overlap of the forward (A → B) and reverse (B → A) work
distributions using estimators based on the Crooks fluctuation
theorem.52

3. METHODS
We will first describe the setup of the cloud-based HPC
clusters that we used to derive the GROMACS performance
on a range of available instance types and provide some details
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about the benchmark input systems and on how the
benchmarks were carried out. Then we will outline our setup
to distribute a large ensemble of free energy calculations on
globally available compute resources.
3.1. Cloud-Based HPC Cluster and Software Setup.

The benchmark simulations were carried out on AWS compute
clusters in the North Virginia region set up with the
ParallelCluster53 open source cluster management tool. Each
cluster consists of a master instance of the same architecture as

the nodes (x86 or ARM). The master fires up and closes down
the node instances as needed and operates the queueing
system (SLURM).54 For the x86 cluster, we used Paral-
lelCluster v. 2.10.0 on a c5.2xlarge master; for the ARM cluster,
we used v. 2.9.1 on a m6g.medium master instance. For
brevity, we will from now on refer to c5.2xlarge instances as
c5.2xl and also abbreviate all other *xlarge instances
accordingly. All instances use Amazon Linux 2 as operating
system; for technical specifications of the instances, see Table

Table 1. Technical Specifications of AWS Instances Used in This Study and GROMACS Compilation Optionsa

network

instance type CPU model HT or vCPUs clock (GHz) used SIMD instructions NVIDIA GPUs MPI lib (Gbps) EFA

c5.24xl Intel 8275CL 96 3.0 AVX_512 i 25
c5.18xl Intel 8124M 72 3.0 AVX_512 i 25
c5n.18xl Intel 8124M 72 3.0 AVX_512 i 100 √
c5.12xl Intel 8275CL 48 3.0 AVX_512 i 12
c5.9xl Intel 8124M 36 3.0 AVX_512 i 10
c5.4xl Intel 8275CL 16 3.0 AVX_512 i ≤10
c5.2xl Intel 8275CL 8 3.0 AVX_512 i ≤10
c5.xl Intel 8275CL 4 3.0 AVX_512 i ≤10
c5.large Intel 8124M 2 3.0 AVX_512 i ≤10
c5a.24xl AMD EPYC 7R32 96 3.3 AVX2_128 i 20
c5a.16xl AMD EPYC 7R32 64 3.3 AVX2_128 i 20
c5a.12xl AMD EPYC 7R32 48 3.3 AVX2_128 i 12
c5a.8xl AMD EPYC 7R32 32 3.3 AVX2_128 i 10
c5a.4xl AMD EPYC 7R32 16 3.3 AVX2_128 i ≤10
c5a.2xl AMD EPYC 7R32 8 3.3 AVX2_128 i ≤10
c5a.xl AMD EPYC 7R32 4 3.3 AVX2_128 i ≤10
c5a.large AMD EPYC 7R32 2 3.3 AVX2_128 i ≤10
hpc6a.48xl AMD EPYC 7R13 96 2.65 AVX2_128 t 100 √
c6g.16xl ARM Graviton2 64 2.3 NEON_ASIMD t 25
c6g.12xl ARM Graviton2 48 2.3 NEON_ASIMD t 20
c6g.8xl ARM Graviton2 32 2.3 NEON_ASIMD t ≤10
c6g.4xl ARM Graviton2 16 2.3 NEON_ASIMD t ≤10
c6g.2xl ARM Graviton2 8 2.3 NEON_ASIMD t ≤10
c6g.xl ARM Graviton2 4 2.3 NEON_ASIMD t ≤10
c6i.32xl Intel 8375C 128 2.9 AVX_512 i 50 √
m6i.32xl Intel 8375C 128 2.9 AVX_512 t 50 √
m5n.24xl Intel 8259CL 96 2.5 AVX_512 i 100 √
m5zn.12xl Intel 8252C 48 3.8 AVX_512 t 100 √
m5zn.2xl Intel 8252C 8 3.8 AVX_512 t ≤25
p3.2xl Intel E5-2686v4 8 2.3 AVX2_256 V100 t ≤10
p3.8xl Intel E5-2686v4 32 2.3 AVX2_256 V100 × 4 t 10
p3.16xl Intel E5-2686v4 64 2.3 AVX2_256 V100 × 8 t 25
p3dn.24xl Intel 8175M 96 2.5 AVX2_256 V100 × 8 t 100 √
p4d.24xl Intel 8275CL 96 3.0 AVX2_256 A100 × 8 i 400 √
g3s.xl Intel E5-2686v4 4 2.3 AVX2_256 M60 i 10
g3.4xl Intel E5-2686v4 16 2.3 AVX2_256 M60 i ≤10
g4dn.xl Intel 8259CL 4 2.5 AVX_512 T4 i ≤10
g4dn.2xl Intel 8259CL 8 2.5 AVX_512 T4 i ≤25
g4dn.4xl Intel 8259CL 16 2.5 AVX_512 T4 i ≤10
g4dn.8xl Intel 8259CL 32 2.5 AVX_512 T4 i 50
g4dn.12xl Intel 8259CL 48 2.5 AVX_512 T4 i 50
g4dn.16xl Intel 8259CL 64 2.5 AVX_512 T4 i 50
g4dn.12xl Intel 8259CL 48 2.5 AVX_512 T4 × 4 i 50
g5.xl AMD EPYC 7R32 4 3.3 AVX2_128 A10G t ≤10
g5.2xl AMD EPYC 7R32 8 3.3 AVX2_128 A10G t ≤10
g5.4xl AMD EPYC 7R32 16 3.3 AVX2_128 A10G t ≤25
g5.8xl AMD EPYC 7R32 32 3.3 AVX2_128 A10G t 25

ai, using Intel MPI 2019; t, using GROMACS’ built-in thread-MPI library. EFA (elastic fabric adapter) signals whether an HPC network is
available.
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1. Whereas all instances can communicate via TCP (see last
columns in Table 1 for the network bandwidth), some of them
have an elastic fabric adapter (EFA). EFA enables HPC
scalability across instances by a higher throughput compared to
TCP and a lower and more consistent latency.
Different versions of GROMACS (2020.2 and 2021.1, with

and without MPI) were installed with the Spack55 0.15.4
package manager. GROMACS was built in mixed precision
with GCC 7.3.1, FFTW 3.3.8, hwloc 1.11, and either Intel MPI
2019 or its built-in thread-MPI library (as listed in Table 1).
GPU versions used CUDA 10.2 on g instances and CUDA
11.1 on p instances. Benchmarks on m6i.32xl instances were
done using ICC 2021.2 and Intel MKL. The multi-instance
scaling benchmarks on m5n.24xl and m5zn.12xl instances used
a GROMACS executable built with Intel MPI + ICC 2021.2
and Intel MKL.
A workshop to reproduce a (slightly updated) setup is

available on the web,56 whereas general advice on how to use
AWS services can be found in this book.57

3.2. Description of the MD Benchmark Systems. To
determine the GROMACS performance on various instance
types, we used seven simulation systems (Table 2). MEM, RIB,

and PEP are typical MD systems differing in size and
composition, where no special functionality like external forces
or free energy (FE) is required. MEM is an aquaporin tetramer
embedded in a lipid membrane surrounded by water and ions
in a simulation box of 10.8 × 10.2 × 9.6 nm3 size.58 RIB
contains an E. coli ribosome in a box of size (31.2 nm)3 with
water and ions.59 The (50 nm)3 large PEP system was used to
study peptide aggregation;60 it contains 250 steric zipper
peptides in solution. MEM, RIB, and PEP were used in
previous performance studies,41,45,61 allowing the comparison
of cloud instances to a variety of other already benchmarked
hardware.
c-Met, HIF-2α, and SHP-2 are representative systems from

the large binding affinity ensemble assembled by Schindler et
al.4 These systems run special FE kernels for all λ-dependent
interactions, i.e., those involving a transformation between
atomic properties. As the FE kernels are slower than the
normal kernels and because of a larger cutoff, finer PME grid,

and the need to calculate two PME grids (one for each of the
physical states), even at equal atom count a FE simulation will
be slower than a plain MD system. We therefore carried out
separate benchmarks for the FE systems, chosen such that
predicting the performance of all ensemble members listed in
Tables 3 and 4 is easily possible: A small, medium, and large

protein plus ligand system to cover the whole range of sizes for
the protein systems (35 k−110 k atoms) and one ligand-in-

Table 2. Benchmark Systems: Specifications of the MD
Input Systems That Are Used for Benchmarks in This
Studya

benchmark
acronym no. of atoms

Δt
(fs)

rc
(nm)

grid sp.
(nm)

no. of FE
atoms

PEP61 12 495 503 2 1.2 0.160 0
RIB59 2 136 412 4 1.0 0.135 0
MEM58 81 743 2 1.0 0.12 0
SHP-2 protein +
ligand

107 330 2 1.1 0.12 53

c-Met protein +
ligand

67 291 2 1.1 0.12 61

HIF-2α protein +
ligand

35 546 2 1.1 0.12 35

c-Met ligand in
water

6 443 2 1.1 0.12 61

aThe FE column lists the number of perturbed atoms for this
benchmark (note that this number will vary for different ligands
considered in the physical end states); Δt is integration time step, rc
cutoff radius, and grid sp. the spacing of the PME grid. Benchmark
input .tpr files can be downloaded from https://www.mpinat.mpg.
de/grubmueller/bench.

Table 3. Systems Considered for the First Binding Affinity
Studya

size (atoms)

system
protein
+ligand ligand

no. of
ligands

no. of
edges no. of jobs

CDK8 109 807 5789 33 54 972
SHP-2 107 330 6231 26 56 1008
PFKFB3 96 049 6570 40 67 1206
Eg5 79 653 6116 28 65 1170
c-Met 67 291 6443 24 57 1026
SYK 66 184 5963 44 101 1818
TNKS2 52 251 6012 27 60 1080
HIF-2α 35 546 4959 42 92 1656
total 2 × 9936

aFor each of eight considered protein−ligand complexes (from the
study4), two sets of simulations are performed: protein+ligand for the
solvated protein−ligand complex and ligand for the solvated ligand
alone. An edge is referred to as the transformation of one ligand A to
another ligand B. As we probe three independent replicas for each
system in forward and backward simulation direction, and three small
molecule force fields (GAFF62 v2.11, CGenFF63,64 v3.0.1, and
OpenFF65 v2.0.0), the total number of jobs is 3 × 2 × 3 = 18×
the number of edges for the protein+ligand plus an equal number for
the ligand systems.

Table 4. Systems Considered for the Second Binding
Affinity Studya

size (atoms)

system protein+ligand ligand
no. of
ligands

no. of
edges no. of jobs

CDK2 106 910 4993 16 25 150
P38 80 777 6750 34 56 336
ROS1 73 957 8434 28 63 378
Bace 73 330 5914 36 58 348
JNK1 72 959 5956 21 31 186
Bace
(Hunt)

72 036 5773 32 60 360

Bace (p2) 71 671 6687 12 26 156
PTP1B 70 020 8753 23 49 294
PDE2 63 943 5504 21 34 204
TYK2 62 292 5956 16 24 144
PDE10 56 616 7655 35 62 372
thrombin 49 312 6025 11 16 96
galectin 35 635 9576 8 7 42
MCL1 32 745 5435 42 71 426
total 2 × 3492

aSame as in Table 3, but considering 14 protein−ligand complexes in
one MD force field (OpenFF v2.0.0). The systems were collected
from public sources for the previous free energy calculation
studies.5,66 The total number of jobs is 3 × 2 = 6× the number of
edges for the protein+ligand plus an equal number for the ligand
systems.
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water system representative for all 9936 ligand-in-water
simulations.
In total, 2 × 9 936 = 19 872 independent jobs were run for

the binding affinity study (Table 3) by which 1656 free energy
differences (ΔΔG values) were determined. Each job first
simulated six nanoseconds at equilibrium (for the starting
state, i.e., A or B), followed by 80 nonequilibrium trans-
formations from the start to the end state (A → B, or B → A),
as mentioned in section 2.3. The 80 individual transformations
were started from different, equidistant positions of the
equilibrium trajectory and were each 50 ps long. In total, 10
ns of trajectory was generated per job.
3.3. Benchmarking Procedure. 3.3.1. MEM and RIB

Plain MD Systems. MEM and RIB benchmarks were run for
20 k steps on single instances and for 40 k−50 k steps when
scaling across multiple instances or multiple GPUs using
GROMACS 2020. Because of effects of load balancing, PME
grid versus cutoff scaling and memory allocations (compare
section 2.2) the first few thousand steps in a GROMACS
simulation are typically slower than average and were therefore
excluded from the benchmarks, which are intended to be
proxies for the long-term performance.
To make use of all CPU cores of an instance, the product of

ranks × threads was set to the number of physical cores or to
the number of available hardware threads. We benchmarked
various combinations of ranks × threads and additionally
checked whether separate PME ranks improve performance.

Pinning of threads to cores was enabled, and no checkpoint
files were written during the benchmark runs.
On GPU instances we used one rank per GPU and offloaded

all short-range nonbonbed interactions to the GPU(s). For
improved performance, also the long-range PME contribution
was offloaded to a GPU, except for some GPU instances with
many cores, where it turned out to be faster to evaluate the
long-range PME contribution on the CPU. For scaling
benchmarks across two or more GPU instances, the long-
range PME contribution was run on the CPU part, as only
there can it be parallelized.
The timings (in simulated nanoseconds per day) reported

for MEM and RIB (Tables 5−9) are averages over two runs.
The parallel efficiency on n instances En reported in Tables 7,
8, and 9 is computed as the performance Pn on n instances
divided by n times the performance on a single instance:

=
·

E
P

n Pn
n

1 (1)

The performance-to-price ratios (ns/$) in the MEM and RIB
tables are calculated from Amazon EC2 on-demand prices for
Linux instance in the US East (N. Virginia) region (https://
aws.amazon.com/ec2/pricing/on-demand/), except for hpc6a
instances, which are not yet available in N. Virginia. Therefore,
for those instances, the prices in the US East (Ohio) region
were used.

3.3.2. Free Energy Systems Used for the Binding Affinity
Study. Each job of the binding affinity ensemble run (Table 2)

Figure 1. HyperBatch-based setup distributes all 19 872 GROMACS jobs globally. An illustrative lifetime of a job follows the steps ①···⑧ and is
described in section 3.4 of the text.
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consists of two parts: first, a 6 ns equilibrium simulation;
second, 80 nonequilibrium transformations of 50 ps length
each.
The first (equilibration) part was benchmarked as described

above for MEM and RIB, using 10 k total steps with timings
from the first half discarded. In cases where PME grid versus
cutoff tuning took more than 5 k time steps, 20 k time steps
were used in total. For the binding affinity runs we did not
check whether separate PME ranks improve the performance.
The timings reported in Tables 10 and 11 resulted from
individual runs of the equilibration part. Here, we ran on
individual instances only, no scaling across multiple instances
was attempted. Though in most cases we tested various
combinations of splitting a given number of total cores Nc into
ranks and threads Nc = Nranks × Nthreads, we do not report all
results in Tables 10 and 11 to keep them reasonably concise.
Instead, we report a consensus for the combination Nranks ×
Nthreads that yielded best results across the free energy
benchmark systems.
The second (transformation) part was benchmarked by

timing one of the 50 ps (25 k steps) long transformation runs.
No time steps were discarded from the measurements, as an
initial below-average performance will occur in each of the 80
short transformation runs and thus should be included when
predicting the performance of the whole transformation part.
The total costs per free energy difference have been derived

by combining the equilibration and transformation phase
timings of the protein−ligand complex and the ligand alone in
water. Six runs were performed per free energy difference for
the protein−ligand complex (3 replicas × 2 directions) plus
additional six for the solvated ligand. All runs for the solvated

ligand were performed on c5.2xl instances. As the 12
independent parts ran in parallel, the time-to-solution is
given by the runtime of the longest individual part. That would
usually be the protein−ligand complex, but in rare cases the
ligand in water would have a longer runtime, as it ran on
comparatively slow c5.2xl instances. Prices for AWS instances
in the US East (N. Virginia) region as of May 2021 were used.

3.4. Setup of Globally Distributed Compute Resour-
ces. The allocation of cloud-based compute resources (e.g., via
ParallelCluster or AWS Batch67) is normally confined to a
specific geographic region (there are currently 26 in AWS).
Whereas stacks of small to medium jobs can be conveniently
executed using just a single region, a global setup is better
suited when a substantial amount of core hours is needed: The
pool of available instances is much larger for all regions
combined compared to just a single region. This allows, for
example, to start more instances at the same time or to pick
only the subset of instances with the highest performance-to-
price ratio. To benefit from global compute resources, we used
AWS HyperBatch as a means to provide a single entry point
for jobs scheduled to AWS Batch queues across regions.
The technical setup used for the binding affinity study is

sketched in Figure 1. For easier overview, the main compute
setup is shown in the middle, whereas input and output of data
is gathered in the left, blue column and monitoring
functionality about the status of jobs and instances in the
right, green column. In a nutshell, AWS HyperBatch provides
cross-regional serverless job scheduling and resource orches-
tration using DynamoDB, Lambda functions, Step Functions,
AWS Kinesis Data Streams, the Simple Queue Service (SQS),
and the Amazon API Gateway.57

Figure 2. Example of a Docker file for a GPU image. From the Docker files multiple Docker container images are compiled (one for each
architecture) that are loaded from the Amazon ECR by the instances.
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For the binding affinity ensemble, we used Spot instances
because they are much cheaper than on-demand. The
downside of a Spot instance is that it can be terminated at
any time, which can happen if the pool of free Spot instances
shrinks over time and more on-demand capacity is requested in
a region. To minimize instance termination, we requested a
number of instances in each region proportional to the Spot
pool size of that region. We introduced additional flexibility by
requesting instances with all possible vCPU counts and fitting
several jobs on them. A single 96 vCPU c5.24xl instance could

then, for example, end up running one 48 vCPU job plus six 8
vCPU jobs at the same time. To better understand the whole
setup, let us look at the encircled digits (red) in Figure 1 and
follow the lifetime of one of the 19 872 jobs from the binding
affinity ensemble. ① We submit an example job from a Cloud9
terminal to the HyperBatch entry point. The job definition file
specifies how many vCPUs to allocate, whether to request a
GPU, and which subfolders to use in the S3 input and output
buckets for job I/O. HyperBatch distributes jobs across regions
according to region weights reflecting the compute capacity of

Figure 3. Perl script used to launch each of the 19 872 jobs (first part).
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the regions, e.g., using the weights (6, 6, 3, 1, 1, 4) for the
regions (us-east-1,us-east-2,us-west-2,ap-
southeast-1,ap-northeast-2,eu-west-1) for
GPU jobs. Our example job gets distributed to eu-west-
1 (blue, ②), where it is relayed to a Batch instance ③ with
sufficient free resources (vCPUs, GPUs). The instance loads
the correct Docker image from AWS Elastic Container
Registry (ECR) with preinstalled software for the current
architecture ④, e.g., pmx and the GROMACS executable with
the SIMD level matching the CPU (see Figure 2 for the
definition of the Docker file). The actual simulations are
handled by the Perl script shown in Figures 3 and 4. This script
is designed to deal with sudden interrupts that are possible
with Spot instances. Accordingly, output data and checkpoints
are saved in regular intervals to S3 storage. To start a
simulation, step ⑤ loads the input files from S3 (line 13 in
Figure 3). Step ⑥ loads potentially existing output data from
S3 (line 18 in the listing); this is the case when the job was
running earlier already but was interrupted before it finished.
Depending on whether prior output data is present, the job is
either continued or started from scratch. Generally, the MD
job consists of two parts: (i) the production of an equilibrium
trajectory (lines 25−56 in the listing) and (ii) the 80 individual
transformations (lines 67−86). Part i is executed in eight
chunks (lines 28 and 29) so that upon instance termination
only a small part needs to be recomputed, as ⑦ each chunk’s
data is transferred to S3. If an instance terminates during one
of the 80 transformations, the job is continued from the start of
that transformation, as a completed transformation ⑦ is
immediately saved to S3. At last, pmx integrates and saves the
work values that are later used for free energy estimation (lines
88−95). Instance termination ⑧ at any time will trigger a
Lambda function that resubmits the job again to HyperBatch.

The current state of each job can be checked in a DynamoDB
table (Figure 1, right). Additional configuration using Amazon
Elasticsearch allows globally monitoring the whole simulation
ensemble in a Kibana68 dashboard that shows the total number
of running instances, the instance types by region, and more.

4. RESULTS AND DISCUSSION
We present our results in four parts: (i) performance, scaling,
and cost efficiency in terms of performance-to-price (P/P)
ratios for the standard MD input systems such as MEM and
RIB on CPU and GPU instances; (ii) a cost comparison of
cloud computing versus buying and operating an own cluster;
(iii) as a prerequisite for the binding affinity study, the results
of the free energy benchmarks (SHP-2, c-Met, and HIF-2α) on
various instance types, including the resulting performance-to-
price ratios; (iv) the performance and the costs of the binding
affinity studies on global cloud resources.

4.1. Which Instances Are Optimal for GROMACS?
Tables 5−9 show the benchmark results for various instance
types. For CPU instances, Table 5 lists MEM and RIB
performances in gray and blue colors, and the resulting P/P
ratios from greens over yellows to reds, corresponding to high,
medium, and low cost efficiency. Table 6 shows the same for
instances with up to 8 GPUs. As the mapping of colors to
values depends on the smallest and largest observed values, it
differs between MEM and RIB, but is the same across all
tables. As a result, greens will always refer to good choices in
terms of P/P ratio. For several of the instances, various ranks ×
threads decompositions are listed; “PME ranks” indicates if
and how many MPI ranks were set aside for PME.

4.1.1. Performance on Individual Instances with CPUs.
The highest performances were measured on hpc6a.48xl,
c6i.32xl, and m6i.32xl instances, which is expected as with 96−

Figure 4. Perl script used to launch each of the 19 872 jobs (cont’d).
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128 vCPUs they offer the largest number of cores (see also
Table 1). Performance-wise, they are followed by 96 vCPU
c5.24xl and m5n.24xl instances. In terms of cost-efficiency,
hpc6a instances are the clear favorites among the CPU
instances.
4.1.2. Performance on Single Instances with GPUs. From

the GPU instances (Table 6), the g5 with 8−32 vCPUs reach
or even surpass the performance of the hpc6a.48xl CPU
instance, albeit with a significantly (1.25−2.4×) better cost-
efficiency. In fact, the single-GPU g4dn’s with 4−16 vCPUs
and g5’s with 4−32 vCPUs exhibit the best cost-efficiency of
all instances for the MEM and RIB benchmarks. Perhaps
unsurprisingly, the highest single-instance performances of this
whole study have been measured on instances with eight

GPUs. With the exception of the (comparatively cheap)
quadruple-GPU g4dn.12xl instances, however, the P/P ratio
plunges when distributing a simulation across multiple GPUs
on an instance. In those cases, GROMACS uses both domain
decomposition via MPI ranks as well as OpenMP paralleliza-
tion, with added overheads of both approaches. Additionally,
as the PME long-range contribution can not (yet) be
distributed to multiple GPUs, it is offloaded to a single
GPU, while the other GPUs share the remaining calculations
of the nonbonded interactions. All imbalances in computa-
tional load between the GPUs or between the CPU and GPU
part translate into a loss in efficiency and thus in a reduced
cost-efficiency. For single-GPU simulations, GROMACS has a
performance sweet spot. Here, domain decomposition is

Table 5. GROMACS 2020 Performance on Selected CPU Instancesa

ans/d values list MEM and RIB performances, and (ns/$) columns show performance to price. Values are color-coded for a quick visual
orientation: Grays for low performances, blue towards higher values. For the performance-to-price ratios, reds indicate sub-average ratios, yellows
average, and greens above-average ratios.
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usually not needed nor invoked, and all nonbonded
interactions including PME can be offloaded to a single
GPU, leading to considerably less imbalance than in the multi-
GPU scenario. To use instances with N GPUs more efficiently,
one can run N simulations simultaneously on them via
GROMACS’ built-in -multidir functionality, thus essentially
gaining the efficiency of the single-GPU case. This is
demonstrated in Table 6 for the p4d.24xl and the g4dn.12xl
instances. The p4d.24xl line in the table shows the results for
parallelizing a single simulation across the whole instance,
whereas p4d.24xl/8 shows what happens when eight
simulations run concurrently. Here, the produced amount of
trajectory and thus also the cost-efficiency, is about four times
as high. For the g4dn.12xl/4 vs g4dn.12xl instance, running
four concurrent simulations instead of one simulation
translates into about a factor of 2 higher cost-efficiency.
4.1.3. Scaling Across Multiple Instances. For selected

instance types, we also determined how much performance can
be gained on multiple instances. For this we have selected
instance types that (i) exhibit above average P/P ratios for the
single-instance benchmarks and (ii) have a network speed of at
least 50 Gigabit/s.

Tables 7, 8, and 9 summarize the results for scaling across
1−32 CPU and GPU instances. For the 81 k atom MEM

system, the maximal performance is reached on 4 hpc6a
instances, however at a parallel efficiency of less than 40%,
whereas for the g4dn’s, the highest performance is recorded on
individual instances. In contrast, the large RIB system shows a
decent scaling behavior. On hpc6a, the single-instance
performance of 10.8 ns/d can be increased to about 60 ns/d
at a parallel efficiency of 69% on eight instances. On 32

Table 6. GROMACS 2020 Performance on Individual Instances with GPUsa

aAs in Table 5, but on instances with up to eight GPUs. PME long-range interactions were offloaded to a GPU in all cases, except *, where they
were evaluated on the CPU.

Table 7. Scaling Across Multiple CPU Instancesa

instances total vCPUs ranks × threads PME ranks MEM (ns/d) EMEM RIB (ns/d) ERIB

1 96 48 × 2/96 × 1 0/24 127.5 1.00 10.81 1.00
2 192 48 × 4/192 × 1 12/48 158.8 0.62 20.35 0.94
4 384 48 × 8/384 × 1 12/96 201.1 0.39 37.63 0.87
8 768 384 × 2 96 182.9 0.18 59.93 0.69
16 1536 128 × 12/384 × 4 32/96 151.9 0.07 87.21 0.50
32 3072 384 × 8/768 × 4 96/192 144.3 0.04 115.49 0.33

aGROMACS 2020 performances for MEM and RIB over multiple hpc6a instances. The third column lists the optimal decomposition into MPI
ranks and OpenMP threads, and the fourth column lists the optimal number of separate PME ranks; the left entry is for MEM, the right entry for
RIB if they differ.

Table 8. Scaling Across Multiple GPU Instancesa

instances
total
cores ranks × threads

MEM
(ns/d) EMEM

RIB
(ns/d) ERIB

1 16 1 × 16/16 × 1 95.3 95.3 5.15 1.00
2 32 4 × 8 65.0 65.0 8.49 0.82
4 64 8 × 8/32 × 2 73.1 73.1 15.80 0.77
8 128 32 × 4/64 × 2 63.7 63.7 21.25 0.52
16 256 32 × 8 25.86 0.31
32 512 32 × 16 22.78 0.14

aAs in Table 7, but for g4dn.8xl instances with hyperthreading off.
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instances, with 115 ns/d, the single-instance performance is
increased 11-fold. Whereas the RIB system continues to scale
beyond 8 hpc6a instances, the g4dn’s never reach 30 ns/d. The
difference in scaling efficiency between CPU and GPU
instances is mainly determined by the network speed for the
internode communication. As the hpc6a instances have a much
better interconnect than g4dn (see Table 1), the scaling is
more efficient for the CPU nodes. The hpc6a instances,
however, never reach the scaling performance of an on-
premises dedicated HPC cluster. There, as shown in Figure 7
of ref 43, the same benchmark systems exhibit peak
performances of 303 ns/d for MEM and 204 ns/d for RIB.
Figure 5 summarizes all benchmark results and interrelates

them to uncover which instances are optimal in terms of both

performance and cost-efficiency. The symbols show bench-
mark performances (at optimal parallelization settings) on
various instances as a function of the on-demand hourly
instance costs. The inclined gray lines are isolines of equal P/P
ratio with the most cost-efficient configurations toward the
upper left. Moving from one isoline to the neighboring one

toward the top left improves the P/P ratio by a factor of 2.
Symbols connected by a line denote the strong scaling
behavior across multiple identical instances, with a single
instance at the left end of the curve, followed by 2, 4, 8, and so
on, instances. A scaling curve that runs parallel to the cost-
efficiency isolines would indicate optimal scaling, i.e., a parallel
efficiency of E = 1. Figure 5 allows a series of observations. (i)
In terms of cost-efficiency, the optimal instances for
GROMACS are the single-GPU g4dn’s with 4, 8, and 16
vCPUs (green symbols toward the left) and g5’s (brown
symbols) whose P/P ratio is at least a factor of 2 higher than
most of the other instance types. (ii) Perhaps unsurprisingly,
the highest MEM and RIB performances on individual
instances are reached with p3 and p4d instances hosting
eight GPUs connected via PCI Express (red and purple
symbols). (iii) For larger systems (RIB and PEP), the highest
absolute performances are reached by scaling across multiple
c6i.32xl or hpc6a.48xl instances, with the hpc6a’s showing by
far the best cost-efficiency. (iv) The performance of small
systems like MEM cannot be significantly improved by scaling
across many instances. (v) Choosing one of the many possible
instances for an MD project essentially boils down to pinning
down a point along the connecting line between best cost-
efficiency and highest performance, trading off HTC and HPC
computing. Let us follow this special line for the example of the
RIB benchmark. It starts at optimal cost-efficiency with the
single-GPU g5.2xl instances (left, brown stars). For higher
performances, one would pick g5.4xl and then g5.8xl instances,
however at the cost of losing 10%−25% in P/P ratio. For
higher performances (again, at reduced cost-efficiency), the
scientist would then continue with scaling over hpc6a instances
(blue) which exhibit the best P/P ratios toward growing
performances. There is generally no reason to pick instances
within the area below the described line as here one simply
gets lower GROMACS performance for the same price. For
example, for the price of a g3.4xl instance (violet, bottom left),
one could instead choose a g5.xl or g5.2xl that exhibits two
times the RIB performance.

4.2. Cost Comparison: Cloud vs On-Premises Cluster.
Whether it is more cost-efficient to run simulations on a cloud-
based cluster depends of course almost completely on the
specific use case, i.e., how big the cluster will be, what software
will run on it, and whether there are enough jobs at all times to
keep the cluster busy as opposed to bursts of compute demand
with idle time in between. Therefore, no generalizable results
or guidance can be provided here. We do think, however, that
rough estimates of respective costs and comparison to a typical
local compute cluster at a research institution will provide
useful information and guidelines in particular for new groups
in the field who need to set up computer resources. To this
aim, we will estimate and compare the total costs of producing
one microsecond of trajectory for the RIB benchmark with
GROMACS.
The hardware for an own cluster can be aggressively tuned

toward cost-efficiency for simulations with GROMACS.
Combining inexpensive processors with consumer GPUs
yields the best performance-to-price ratios.41 For instance, 1
U (rack unit) nodes with an Intel E5-2630v4 processor plus an
NVIDIA GeForce RTX 2080 GPU were offered for under
2000 € net at the time, including three years of warranty.
Investment costs for the racks, cooling system, and infra-
structure needed to operate the cluster are estimated to about
500 € per U of rack space over the lifetime of the racks. For a

Table 9. Scaling Across Multiple GPU Instancesa

instances
total
cores ranks × threads

MEM
(ns/d) EMEM

RIB
(ns/d) ERIB

1 32 1 × 32/8 × 4 98.1 1.00 7.48 1.00
2 64 8 × 8/32 × 2 76.0 0.39 13.27 0.89
4 128 8 × 16/32 × 4 73.2 0.19 19.50 0.65
8 256 32 × 8 24.39 0.41
16 512 64 × 8 28.38 0.24
32 1024 32 × 32 21.47 0.09

aAs in Table 7, but for g4dn.16xl instances with hyperthreading off.

Figure 5. Performance, costs, and cost-efficiency for GROMACS
simulations on various AWS instance types. GROMACS 2020
performance as a function of the on-demand instance costs ($/h)
for the MEM (circles), RIB (stars), and PEP (triangles) benchmark
on CPU (open symbols) and GPU instances (filled symbols).
Separate symbols indicate single-instances; connected symbols show
the parallel scaling across multiple instances.
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lifetime of 5 years, that adds 100 € per U per year. For
technical staff to operate, repair, and look after a 500 node
cluster, we assume 100 000 € per year, which adds 200 € to the
operating costs for each node per year. A suitable room (60−
100 m2 for about 500 U of hardware with appropriate
infrastructure and the possibility to install heavy apparatus)
adds about 30 000 € to the yearly costs (60 € per node),
depending on the location. For cluster management software
we assume 40 € per node per year. Bar A of the top panel of
Figure 6 shows a breakdown of the total costs for our
optimized consumer GPU node. Bar D illustrates how the
costs grow when using the same hardware as in bar A, but now
with a professional GPU (e.g., an NVIDIA Quadro P6000)
instead of a consumer GPU (which leads to considerably
higher fixed costs) and in a larger chassis that takes 4 U rack
space (which lead to significantly increased recurring costs for
room and rack space). Thus, densely packed hardware helps to
reduce costs. The lower panel of Figure 6 shows the resulting
costs per microsecond of RIB trajectory for the nodes from the
upper panel. g5.2xl instances offer both a high absolute
performance as well as a good performance-to-price ratio for
GROMACS (Figure 5), which would therefore be a good pick
for production runs. However, on-demand g5.2xl instances
would yield RIB trajectory costs as high as 3200 €/μs. To
reduce costs, one would reserve an instance for one or three
years, and for maximal savings one can pay up front (bars C).
g5.2xl Spot instances are nearly as cost-efficient as consumer-
GPU nodes tailored toward GROMACS (bars A and B in the
lower panel). They are more cost-efficient than buying a node
with a professional GPU (bar D). In summary, with careful
selection of cloud resources and payment options, there is not

much difference in cost today compared to on-premises
computing.

4.3. GROMACS Performance for Free Energy Calcu-
lations. Turning on FE perturbations reduces the GROMACS
performance, because an additional PME grid is evaluated, and
because interactions involving perturbed atoms run through
kernels that are not as optimized as the standard kernels. How
much the performance differs with and without FE depends on
how big the fraction of perturbed atoms is and on the
parameters chosen for FE. For those reasons we cannot use the
MEM and RIB benchmarks to predict the performance of the
systems used in our high-throughput ligand screening study.
Instead, we carry out new benchmarks for four representative
FE systems (Table 2) chosen from the whole binding affinity
ensemble (Table 3). The performances for these systems,
which are a small ligand-in-water system (from the c-Met data
set) plus three protein−ligand complexes of different size
(HIF-2α, c-Met, and SHP-2) are shown in Table 10 for CPU
instances for various decompositions into MPI ranks and
OpenMP threads. For convenient navigation and the latest
updates of the benchmark data we also provide access to this
information via web interface: http://pmx.mpibpc.mpg.de/
aws.pl. The table shows the general trend of small instances
exhibiting higher P/P ratios, but there are no pronounced
differences between the architectures. The highest perform-
ances are observed on the 96 vCPU Intel instances.
Up to version 2020, with perturbed charges it was not

possible to offload the PME grid calculations to the GPU. This
has changed from version 2021 on, leading to considerably
enhanced performance (more than a factor of 2) on GPU
instances in our cases (Figure 7). Therefore, we used

Figure 6. Costs and cost-efficiency of a compute node in an owned cluster compared to a cloud instance with similar GROMACS performance
over 3 years. Top panel: Violet bars show costs of AWS g5.2xl instances (producing 7.55 ns/d of RIB trajectory), which offer one of the highest
performance-to-price ratios for GROMACS (compare Figure 5), in individual blocks of one year. Bar A shows the fixed costs for buying a
consumer GPU node tailored to GROMACS within the thick black line (broken down into individual hardware components) plus the yearly
recurring costs (mainly energy) for three years. This node (E5-2630v4 CPU plus RTX 2080 GPU) produces 5.9 ns/d of RIB trajectory.41 Bar B
shows the average costs using an AWS Spot instance. Bar C shows the costs when reserving the AWS instance and paying up front. Bar D is the
same as bar A, but using a 4 U node with a professional GPU (e.g., Quadro P6000). Bars A−D in the lower panel show the resulting RIB trajectory
costs for the nodes shown in the top panel, for a service life of three years.
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GROMACS 2021 for all binding affinity simulations. The
benchmark results for the four representative FE systems on
GPU instances are assembled in Table 11.
Whereas the performances of the 32 and 64 vCPU g4dn

instances are comparable to or higher than that of the best
performing CPU instances (i.e., c6g.12xl for the ligand in water

and c5.24xl for the protein−ligand complexes), the smaller
g4dn instances with ≤16 vCPUs still offer high performance
but at exceptionally high P/P ratios: about two times higher
than on CPU instances. On the instances with ≥32 vCPUs it is
beneficial for performance to just use half the number of
vCPUs for OpenMP threads, as the reduction of values over
too many threads can deteriorate performance otherwise. The
recently introduced g5 instances even surpass the g4dn
performance at a similarly good price−performance ratio.
Regarding cost-efficiency, any of the c5, c5a, or c6g instances
with ≤8 vCPUs has a high P/P ratio for the small ligand-in-
water systems, whereas single-GPU g4dn instances with ≤16
vCPUs or g5’s with 8−32 vCPUs are undefeated for the larger
protein−ligand systems.

4.3.1. Costs and Time-to-Solution per FE Calculation. The
numbers in Tables 10 and 11 are for the equilibration phase of
the FE calculation (see section 3.3.2). We do not list the
benchmark results of the transformation phase separately, but
included them in the estimate of the total cost of computing
one FE difference, as described in Methods. Figure 8 shows the

Table 10. Free Energy Benchmarks on CPU Instancesa

aPerformance (ns/d) and performance-to-price ratios (ns/$) for GROMACS 2020 on various Intel (c5 and m5zn), AMD (c5a), and ARM (c6g)
CPU instances. Color coding as in Table 5.

Figure 7. Performance improvements of GROMACS 2021 for free
energy calculations on GPUs. For three different MD systems (colors)
with free energy perturbation turned on, the bars compare
GROMACS 2021 and 2020 performances on a p3.2xl instance.
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time-to-solution and the costs per FE difference that result
when using different Spot instance types. The figure does not
include hpc6a instances because currently hpc6a is available
only on-demand. With three replicas and two directions, the
total costs for one FE difference is 6× the time needed for the
protein−ligand part, plus the (small) costs of the ligand in
water.
Spot instance costs are just about a third of the on-demand

costs (not shown), although Spot prices vary slightly among
the regions and change over time. We therefore used Spot
instances for our binding affinity studies, even though these
may be terminated at any time should there be demand for
that instance type in the given region. As can be seen in Figure
8, on CPU instances the time-to-solution generally shrinks
with the number of vCPUs (as expected) while the costs grow.
Using g5.2xl, g5.4xl, g4dn.xl, g4dn.2xl, or g4dn.4xl GPU
instances, any FE calculation is completed within 15 h for less
than $20 for all systems (green quadrant). Other single-GPU
instances like g4dn.8xl, g5.8xl, and g5.xl are somewhat less
cost-efficient but still better than the remaining instance types.
The white quadrant on top of the green quadrant
accommodates multiple instance types on which an FE value
can be computed in less that 15 h, albeit at a markedly higher
cost than on g4dn instances.

4.4. High-Throughput Ligand Screening in the Global
Cloud. 4.4.1. Study 1: Focus on Time-to-Solution. Our first
screening study consisted of 19 872 Batch jobs to compute
1 656 free energy differences (200 μs of trajectory in total) for
the ensemble shown in Table 3. With this study we evaluate
the suitability of cloud computing for large-scale computational
drug design scans that have been traditionally performed on
on-premises clusters where such a scan would typically take
several weeks to complete.
As we aimed to minimize the time-to-solution, from all

available instance types we selected only instances that would
need no more than nine hours for any job. The g4dn.2xl,
g4dn.4xl, and g4dn.8xl meet that criterion at the lowest costs.

Table 11. Free Energy Benchmarks on GPU Instancesa

aAs in Table 10, but now for GROMACS 2021 using one GPU per simulation. The single-GPU performance on p4d.24xl was derived by running 8
identical benchmarks, each using one GPU and 1/8th of the hardware threads, in a multi-simulation.

Figure 8. Costs and time needed to compute one FE difference.
Diamonds show the costs to compute one FE difference (using Spot
pricing) versus the time-to-solution for various instance types (colors)
for the c-Met system. In addition to c-Met, HIF-2α is shown at the
lower left end of each colored line, and SHP-2 at the upper right end.
The gray square shows costs and timings for a consumer GPU node
specifically tuned for GROMACS simulations, as discussed in section
4.2 and shown in Figure 6A.
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Figure 9. Usage of global compute resources for the first ligand screening study aimed to optimize time-to-solution. Colors show the various
instances that were in use globally during the 3 days of the ensemble run.

Figure 10. Usage of global compute resources for the first ligand screening study aimed to optimize time-to-solution. Compute resources (split into
regions) allocated for the ensemble run over time. Top, vCPUs; middle, GPU instances; bottom, number of instances.
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(At the time of our screening studies the g5 GPU instances
were not yet available.) However, relying on just three instance
types is risky if one wants to minimize time-to-solution. g4dn
instances are not very abundant in the AWS cloud, and if they
happen to be in high demand at the time of our screening
study, we might not get many of them. Therefore, we added
other instance types that meet our nine hour criterion but that
are almost always available: c5.24xl and c5.18xl as well as the
similar c5d.24xl and c5d.18xl. We ran the small systems of
ligand in water on eight c5 vCPUs, where they would complete
in about five hours at a price of less than $2 and high cost-
efficiency (see c-Met ligand column in Table 10). To draw
from a larger pool of instances we allowed for c5 instances of
various size and just requested that they offer at least eight
vCPUs (see also Figure 9). Larger instances accept multiple
jobs until they do not have enough free vCPUs left.
We submitted the first 9936 jobs (the large protein systems)

in a first wave on a Monday at around 5 p.m., and the second
9936 jobs (the small ligand systems) were submitted in a
second wave 24 h later. Figure 9 shows the number of
instances that were in use during our first screening study
color-coded by instance type. Figure 10 provides further details
of the run. As can be seen from the top and middle panels, we
acquired about 140 000 vCPUs within the first 30 min and
about 3000 GPUs within the first two hours of the run,
distributed globally over six regions.
Each wave finished in about 1 day, and we speculate that

also the whole 19 872 jobs would have finished within 24 h if

submitted simultaneously. As GPU instance availability is
essentially independent of the CPU instance availability, the
GPU jobs from the first wave (greens in Figure 9) can
completely overlap with the CPU jobs of the second wave. At
the same time, after the peak of the second wave (Tue 17 h−
23 h), there should be more than enough c5 Spot capacity to
accommodate the CPU jobs of the first wave.
Unfortunately, there was a glitch in the initial version of our

setup that prevented finished instances to terminate properly.
For that reason, the actual costs of the first run summed up to
$56 per FE difference, although, when counting productive
time only, they reduce to $40 per FE difference. This is in the
expected range (see Figure 8), given the mix of instances that
were in use. The overall costs almost entirely resulted from the
hourly charges of the EC2 compute instances, whereas data
transfer to and from the S3 buckets accounted for less than
0.5% of the whole costs.
We observed 3070 restarts due to Spot instance terminations

during this study; that is, restarts comprised about 15% of the
overall job number. In the worst case, if an instance terminates
just before writing a checkpoint, 1 ns of simulation time is lost.
As we simulate 10 ns per job, an upper bound for the loss due
to Spot instance terminations is about 1.5% of the total
compute time. Spot instances get a signal two minutes before
shutdown; thus, to completely avoid loss of compute time in
the future, that signal could be used to trigger checkpoint
writing in an improved simulation protocol. In addition to the
performance and price evaluation, we have also validated

Figure 11. Usage of global compute resources for the second ligand screening study aimed at optimizing cost-efficiency. Top, allocated instance
types over time; bottom, GPU instances allocated in the different regions.
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correctness of the calculations against the previous computa-
tions.69 We used Student’s t test to compare free energy values
calculated in the current work to those reported previously,
ensuring that the results showed no statistically significant
differences.
4.4.2. Study 2: Focus on Cost-Efficiency. Our second

screening study aimed to further reduce the price tag by
incorporating only the most cost-efficient instance types for the
run. The second study used a slightly different and smaller data
set (see Table 4) that required 6984 jobs to be run for 582 FE
differences, or 70 μs of trajectory in total. The setup was as in
the first study; however, we further excluded instances with low
cost-efficiency. Most notably, we ran all the protein systems on
cost-efficient GPU instances. The acquired resources over time
for the second study are shown in Figure 11.
The vCPU usage peaked at slightly above 35 000 vCPUs at

two hours into the second run (not shown), with on average
500 GPU instances in use over 26 h. About six hours after the
submission of the ensemble the small ligand-in-water systems
were finished (blue and orange areas in Figure 11, top). As our
benchmarks on c5.2xl estimated a runtime of about five hours
per system, we conclude that there were enough c5 Spot
instances available to run each of the 3492 ligand jobs
concurrently.
GPU instances are however running over a time span of

about 30 h altogether, as apparently not enough g4dn Spot
capacity was available to run all 3492 GPU jobs concurrently.
From the lower panel of Figure 11 we see that at the time of
submission, there was only g4dn capacity available in four
regions, whereas the Ireland (blue) and North Virginia
(yellow) regions provided g4dn instances only after several
hours into the run. The large differences across regions
underline that a multiregion approach is necessary for decent
job throughput when limiting oneself to only a few instance
types. The resulting costs of our second study were about $16
per FE difference and thus only about a third of what was
achieved in the first study and in line with what is expected
from the benchmarks on g4dn instances (Figure 8).
Both high-throughput ligand screening studies illustrate the

flexibility of cloud computing for MD-based investigations:
AWS can be used to scale up the computations to the extent of
a large HPC facility but can also be used in a cost-efficient
manner akin to a smaller in-house cluster. When aiming to
minimize the time-to-solution, the 19 872 calculation jobs were
finished in ∼2 days. This compares well to the timing in the
recent report, where the Tier 2 Max Planck Supercomputer
Raven (interim version, 480 Intel Xeon Cascade Lake-AP
nodes with 96 cores, 192 threads) performed calculations of
the same data set in ∼3 days.69 The cost-efficient usage of the
cloud resources allowed reaching the cost of $16 for a free
energy calculation. Cost-efficiency could be further optimized
by also running the ligand-in-water simulations on the g4dn
GPU instances (instead of using c5 instances), which would
result in a cost of $14 per free energy difference, although g4dn
capacity may then not be sufficient to run all simulations at
once. In comparison to a GROMACS optimized in-house
cluster of Intel E5-2630v4 10-core nodes and NVIDIA RTX
2080 GPU, this cost would be ∼$8.5, in agreement with the
estimates of relative costs for a compute node analyzed in
Figure 6.

5. SUMMARIZING DISCUSSION

Cloud computing has the potential to transform large-scale
simulation projects. To date, computationally intensive
projects, when assigned to busy on-premises clusters with
limited computing capacity, may need weeks or months to be
completed. In the cloud, though, the required processing
power can be distributed among numerous compute centers
around the globe. With the removal of the bottleneck of
limited computing capacity, jobs that are independent of each
other can run simultaneously in a high-throughput manner,
thus reducing the time-to-solution to the runtime of the
longest simulation of the ensemble. Such use cases that require
very high peak performance over a short period of time can
easily be met by cloud computing, while installing and
operating a sufficiently large local cluster would be neither
cost-effective nor feasible.
For the use case of MD-based high-throughput ligand

screening we established a HyperBatch-based workflow that
allows completing large-scale projects that would run for weeks
on an on-premises cluster within 48 h or less in the cloud.
Shortly after submitting 19 872 jobs, we acquired about
140 000 compute cores and 3000 GPUs in multiple regions
around the globe. We demonstrated that the costs associated
with such projects can be reduced about 9-fold compared to a
naiv̈e implementation: A job checkpoint-restart mechanism
allowed using Spot instances instead of on-demand instances,
which accounts for a 3-fold reduced price. Putting the
benchmarked application performance in relation to the
instance costs allowed selecting from a huge variety of
available instance types the most cost-efficient ones only,
thereby reducing the price tag by another factor of 3, albeit at
the cost of a longer time-to-solution.
Whereas HyperBatch is geared toward speeding up HTC

projects, we also investigated HPC strong scaling scenarios
with a cloud-based HPC cluster. Cluster installation via
ParallelCluster and software installation via Spack provided a
straightforward and reproducible setup. Because of the
possibility to automatically scale up (and down) the number
of cluster nodes depending on whether there are jobs in the
queue, there is virtually no waiting time for jobs in the queue.
The breadth of readily available hardware that includes several
architectures (Intel, AMD, ARM) in various sizes (regarding
core count), accelerators like GPUs, and high-performance
network if wanted, allows always picking the optimal hardware
for the job at hand, in terms of a short time-to-solution or a
high cost-efficiency. For GROMACS, we found that g4dn and
g5 GPU instances offer the highest performance-to-price ratio,
followed by hpc6a CPU instances, whereas instances with the
fastest interconnect (c6i.32xl, hpc6a, and c5n.18xl) showed the
best parallel scaling on up to 64 instances using 8192 vCPUs
altogether for the largest benchmark system.
So how did, overall, cloud computing compare to a local

cluster for our realistic test cases? For many cases, the extra
flexibility offered by the cloud will certainly come at a cost
higher than that of a local compute cluster. However, as our
study shows, by aggressively tuning both alternatives toward
cost-efficiency we are approaching a break even point, and the
costs of cloud computing and on-premises computing become
similar. In fact, an on-premises consumer-GPU cluster tailored
toward GROMACS produces an MD trajectory at about 0.85×
the costs of Spot GPU instances with similar performance.
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We note that this outcome is also due to the fact that very
specialized single software, GROMACS, was used; in contrast,
if a wider variety of software has to run, the nodes can probably
not be tuned that much and therefore will be less cost-efficient
for a particular application. Just the use of a professional GPU
instead of a consumer GPU will result in trajectory costs
significantly higher than what can be achieved on an optimal
Spot instance.

6. CONCLUSIONS

Cloud computing has traditionally been much more expensive
than an on-premises cluster for the case in which continuous
long-term computer performance is required. Here we have
shown that this has changed, at least for the specialized, yet
highly important application of drug design. We are now at a
break even point, where the costs are the same, maintaining the
great benefit of cloud computing to offer enormous flexibility
and, if required, extremely short production times. We
consider this a critical milestone for MD-based high-
throughput computational drug design.

■ DATA AND SOFTWARE AVAILABILITY

The input files for the benchmarks can be downloaded from
https://www.mpinat.mpg.de/grubmueller/bench. A guide to
build GROMACS on AWS is available here: https://gromacs-
on-pcluster.workshop.aws. Free energy calculation benchmarks
are available at http://pmx.mpibpc.mpg.de/aws.pl.
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