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ABSTRACT: Nowadays, drug design projects benefit from highly
accurate protein−ligand binding free energy predictions based on
molecular dynamics simulations. While such calculations have been
computationally expensive in the past, we now demonstrate that
workflows built on open source software packages can efficiently
leverage pre-exascale computing resources to screen hundreds of
compounds in a matter of days. We report our results of free
energy calculations on a large set of pharmaceutically relevant
targets assembled to reflect industrial drug discovery projects.

■ INTRODUCTION

Over the past decade, molecular dynamics-based alchemical
free energy calculations have become widely adopted for
assessing ligand−protein affinity changes upon protein
mutation1−4 or, even more frequently, upon ligand mod-
ification.5−9 The methodology has become widely used in both
the academic environment and pharmaceutical industry, where
the computational predictions often aid and may even guide
drug design efforts.
To facilitate such calculations, commercial5,9,10 and free6,8

solutions have been developed. The achieved accuracy and
computational efficiency of these methods depend on a
number of aspects, for example, force field, simulation engine,
hybrid ligand structure/topology generation, and more.
Therefore, it has become essential to evaluate the method
performance on large benchmark sets comprising multiple
diverse protein−ligand complexes. One such data set compiled
by Wang et al.5 has readily become a standard in the
community. This benchmark set was later extended by
including additional protein−ligand systems.8 Another partic-
ularly useful contribution has been brought by Schindler et al;7

here, the authors presented a collection of publicly available
data sets curated to represent protein−ligand systems
investigated prospectively in Merck KGaA. The benchmark
set is of special interest as it is tailored to reflect real-world
application cases that are encountered in the pharmaceutical
industry.
In our earlier work, we have used benchmark data sets

collected from the literature to explore what prediction
accuracies are achievable with the open source software and

force fields.8 Following up on the latter investigation, we have
now aimed to probe how quickly a large collection of
benchmark systems collected by Schindler et al.7 could be
evaluated when relying on the free open source software.
Answering this question also demonstrates how drug develop-
ment projects could be sped up by mere access to sufficient
computational resources. For that we used Max Planck
Society’s HPC Supercomputer “Raven” for three days to
compute the whole data set with three different force fields, in
total, performing ∼1.6 million molecular dynamics simulations,
thus highlighting the scalability of the nonequilibrium free
energy calculation protocol. As a result, we demonstrate that
pre-exascale resources readily paved the way for large-scale and
state-of-the-art molecular dynamics-based computational drug
discovery projects to be run “overnight”, in contrast to months
required on current smaller-scale or shared resources.

■ SETUP

The overall project workflow is summarized in Figure 1. We
initialize the procedure with the protein−ligand complexes
provided with the publication of the benchmark set assembled
in Merck KGaA.7 This step of system assembly and cleaning,
followed by the careful modeling of ligands, is highly
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important. Introducing ligand poses that do not reliably reflect
actual ligand binding preferences would have severe con-
sequences on the final free energy estimate accuracy. There are
also numerous decisions required at this step: protein and
ligand protonation states; protein starting structure selection; if
needed, reconstruction of missing atoms and residues, and
various additional aspects, many of which are summarized in
the recent best practice guide.11 In the current work, we started
with this step readily accomplished by Schindler et al.7 and
continued our procedure with the topology generation.
This way, in the first step, for each of the considered

complexes, we created GROMACS12 compatible topologies
for various force fields. Proteins were represented by means of
AMBER99SB*ILDN13−15 and CHARMM36m.16 For this, we
employed the standard GROMACS topology generation tools.
To parametrize the ligands, we chose three different force
fields: GAFF17 version 2.11 topologies were created with the
antechamber18 and ACPYPE19 software. MATCH20 was used
for assigning the CGENFF v3.0.1 parameters. We have also
included a version v1.2.0 Parsley of the recently developed

OpenFF21 force field. The OpenFF topologies were generated
using the OpenFF toolkit22 and converted to GROMACS
topologies using ParmEd.23 For the further simulations, GAFF
and OpenFF were combined with the AMBER99SB*ILDN
protein force field, while CGENFF was used in combination
with CHARMM36m.
As at this step we did not employ high level quantum

chemical calculations (AM1-bcc charges24 for GAFF and
OpenFF; MATCH assigned charges based on bond charge
increment rules for CGENFF), the step only takes up to
several minutes per ligand. If a more elaborate parametrization
is desired, it may become more time efficient to perform the
computationally costly QM calculations on an in-house cluster
or at an HPC facility.
Afterward, in the second step of the procedure, we created

hybrid structures and topologies for the ligand pairs using the
pmx25 software. To enable equivalent comparison with the
previously published results, we have chosen to evaluate free
energy differences between the same ligand pairs as reported
by Schindler et al.7 This step is not computationally
demanding and can be performed sequentially in a matter of
minutes or hours even for a large set of perturbations. The
generated hybrid structures were then assembled together with
the protein structures, and a standard GROMACS procedure
of system solvation and addition of salt was performed.
Up to this point, the prepared systems are agnostic to the

specific free energy protocol; i.e., they can be used for the free
energy perturbation (FEP); discrete, slow growth, or non-
equilibrium thermodynamic integration; or any other alchem-
ical protocol of interest. Here, based on our experience in a
previous investigation,8 we have chosen to use the non-
equilibrium free energy calculation procedure. To briefly
outline the procedure, we equilibrate the system in its two
physical end states representing the two ligands that are
perturbed into one another. Subsequently, from the trajectories
generated in equilibrium (6 ns per run), we extract 80
snapshots and start a quick 50 ps transition from one physical
state to the other. The whole procedure is performed for two
branches of the thermodynamic cycle: perturbation in water
and in a protein−ligand complex. Also, to obtain a reliable
uncertainty estimate, each ΔΔG calculation was performed
using three independent replicates.
As a preparatory step, we have performed an energy

minimization and a brief equilibration of the system for 100
ps (step 3 in Figure 1) on an in-house cluster. In principle, this
step could be merged with the following main calculation
performed on the HPC Supercomputer. For the current
project, however, we decided for an option of carrying out
initial short simulations on an in-house computer cluster. This
way, we ensured that the prepared systems were stable and
ready to be transferred to the HPC Supercomputer Raven for
the actual free energy calculations. Since in an everyday
application this step would be a part of the next step (step 4 in
Figure 1), its timing is of no particular importance, as it
constitutes only a minor fraction of the full free energy
computation.
The fourth step in Figure 1 is the main point of the

computations in this letter highlighting the scaling capabilities
for such calculations. While the GROMACS simulation engine
itself offers high throughput in terms of generated trajectory
time,26 the employed free energy calculation protocol further
allows for trivial parallelization of the jobs. Overall, we could
divide the whole scan into 19,872 independent jobs: 552 ΔΔG

Figure 1. Workflow for the simulation procedure. (1) We start with
the protein−ligand complexes prepared and made public by Schindler
et al.7 The protein topologies are prepared in AMBER99SB*ILDN
and CHARMM36m force fields, while for the ligands we used GAFF
2.11, CGENFF 3.0.1, and OpenFF 1.2.0 force fields. (2) Hybrid
ligand structures and topologies for alchemical calculations are created
with the pmx software, and further, the systems are assembled and
prepared for the simulations with GROMACS. (3) Energy
minimization and a brief 100 ps equilibration was performed on an
in-house cluster. For the further automation of the workflow, this
procedure could be merged with the following step and run in an
HPC facility. (4) The main step where the simulations were
performed on the Raven Supercomputer. We were able to make use
of the trivial parallelization of the calculations by dividing the whole
set into individual jobs as detailed in the text. (5) After finalizing the
simulations on the HPC machine, the data were retrieved and
analyzed locally.
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calculations in three force fields for two thermodynamic
branches (water, protein−ligand), each of which requires two
simulations (one for forward and one for backward direction)
and three independent replicas for each calculation. In total,
∼200 μs of a simulation trajectory was generated in this scan.
The whole simulation was accomplished in approximately
three days, leveraging resources allocated during the testing
phase of the Max Planck Supercomputer Raven (interim)
allowing one to simultaneously use 480 Intel Xeon Cascade
Lake-AP nodes with 96 cores (192 threads) each.
The current division of simulations into separate jobs was

dictated by the available resources and could be easily modified
to match a specific HPC architecture. For example, having
access to a particularly large computer facility one could
further separate every short 50 ps transition into an individual
job allowing one to run ∼1.6 million small jobs in parallel, thus
further reducing the waiting time to prediction.
In the final step, the generated output was transferred from

the HPC facility and analyzed on a local workstation by means
of the pmx software. The accuracies of the predicted free
energies were further explored by comparison to the
experiment and previous calculations.

■ RESULTS: CALCULATION ACCURACY

Overall, the calculation accuracy matches well our earlier
observations for a different protein−ligand benchmark set.8

Relying on our earlier experience,8 we have constructed the
consensus approach combining results from two different
families of force fields: GAFF and CGENFF (we have not
included OpenFF in the consensus, because its early 1.2.0
version mainly aims at reproducing the behavior of GAFF). In
turn, this yields better accuracy in terms of agreement with the
experimentally measured values than the force fields
considered individually when comparing predicted ΔΔG

with experimental measurements (Figure 2, Figure S1). The
consensus calculations (AUE 1.11.1

1.3 kcal/mol, Pearson
correlation 0.590.49

0.66) also approach the performance of the
commercial software FEP+ (AUE 1.11.0

1.1, Pearson correlation
0.660.6

0.71).
Individually, GAFF 2.11 and OpenFF achieved comparable

accuracy and performed better than the CGENFF force field. It
could not be excluded that the results obtained with the
CGENFF force field could be further improved by employing a
newer force field version, as currently we relied on an older
parameter set (3.0.1). To probe sensitivity of the results to the
force field version, we have performed calculations on the same
set of systems by using bonded ligand parameters (bonds,
angles, dihedrals) from the newer CGENFF 4.6 version. The
nonbonded ligand parameters, as well as all the protein, water,
and ion parameters, were retained the same as in the earlier
simulations. It appears that this way an upgraded force field
does not warrant higher prediction accuracy (Figure S2). Of
course, this test does not mean that improving on force fields is
a futile task, but rather it suggests that to see significant
improvement larger modifications might be required, for
example, improvements on atom type assignment for specific
chemical groups or additional QM-based parametrizations.
Regarding the OpenFF force field, here we have

benchmarked an early version (v1.2.0 Parsley) of the force
field. At the time when the calculations were performed, this
OpenFF version had not yet undergone Lennard-Jones
parameter reparameterization. Recently, OpenFF v2.0 has
been released, and some preliminary calculations indicate its
improved accuracy in ΔΔG predictions.27 Therefore, in the
future, it would be interesting to probe how much the accuracy
would improve by employing the updated force field versions.
In the bottom panels of Figure 2 (and Figure S1), we show

the breakdown of the calculated ΔΔG values by protein−

Figure 2. Comparison of the computed ΔΔG values to the experimental measurements. (Top) Scatter plots of all the values that have been
reported by Schindler et al.7 for the FEP+ 5 ns per window calculation protocol. In adherence with the best practice,11 the directions of the ΔΔG
edges have been retained exactly the same as in ref 7. The first panel reports FEP+ 5 ns results by Schindler et al., while the other panels present
results from the current work. (Bottom) Average unsigned error (AUE) and Pearson correlation (cor) for each protein−ligand complex separately.
The horizontal lines denote mean values. The numbers in the panels report the free energy differences calculated for each system. In the analysis,
we consider 526 ΔΔG estimates that had values reported for the FEP+ 5 ns protocol.
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ligand complex. The performance of the individual force fields
depends on the system simulated and is often strongly
influenced by large outliers; for example, the overall well-
behaved GAFF force field shows a reduced accuracy for the
shp2 complex mainly due to a number of poor predictions.
The consensus approach often suppresses the largest
deviations from the experimental measurements. Modeling of
the initial ligand pose also plays an important role for the result
accuracy. For example, for the cmet protein−ligand complex,
Schindler et al. reported the results after probing several
modeled poses (personal communication). In the current
work, we used a single pose which in some cases was
suboptimal for the cmet system, in turn yielding more outliers
and lowering prediction accuracy.
It is also important to note that while we have computed all

552 ΔΔG values for the ligand maps from the work by
Schindler et al.,7 some entries were not present for the FEP+
calculation protocol using 5 ns simulations. In order to have a
consistent comparison, we have retained 526 ΔΔG estimates
that had values reported for the FEP+ 5 ns protocol. We have
also ensured that using the whole data set does not have a
significant effect on the obtained accuracy (Figure S3).
An important question always accompanying molecular

dynamics-based methods is whether the simulations are
sufficiently converged. Schindler et al. extended their
simulation by a factor of 4, thus reaching 20 ns sampling for
each window; this resulted in a modest and statistically
insignificant increase in prediction accuracy (Figure S4).
Similarly, we have also probed whether better convergence
would increase prediction accuracy in case of our calculations.
To this end, we have selected cdk8 protein−ligand complexes
and performed the transition simulations between the end
states two times slower (100 ps per transition). Similarly to the
observations with the increased sampling in FEP+ case, we
observed only an insignificant increase in accuracy (Figure S5).
This test, however, does not exclude the possibility that
reaching a sufficient convergence (irrespective of the required

sampling time), could further improve the prediction accuracy.
In fact, we do observe a closer agreement with the experiment
for those ΔΔG estimates that are converged better (Figure 3).
In these cases of convergence assessment, we have mainly

concentrated on the convergence of the free energy estimate
itself. However, it is possible to obtain a well-converged
estimate, yet if it reports on a free energy difference between
states that do not match those observed in experiment, the
prediction accuracy will be poor. An example of this situation is
system eg5, where alternative loop conformations in the
vicinity of the ligand binding site yield different ΔΔG
accuracies (Figure S6). Only given a sufficiently long sampling
time, one might expect establishing reliable population ratios
between largely different conformers.
As it was not the main aim of the current letter to investigate

all the particular details of the predicted ΔΔG values and their
force field dependence, together with the manuscript we
provide all the calculated data. We are further planning to
incorporate the data generated in this scan into a larger
benchmark study comprising protein−ligand complexes
assembled from numerous benchmark sets (refs 5, 7, 8, and
others) and comparing free energy predictions from multiple
force fields and their different versions.

■ CONCLUSIONS

In the current letter, we highlight that rapid high throughput
sampling of protein−ligand binding affinities is readily
achievable. Provided that sufficient computational resources
are available, large scale alchemical protein−ligand binding free
energy predictions can be efficiently run solely relying on the
open source software in a routine fashion to guide drug
discovery projects. Screening hundreds of derivatives of an
initial hit or lead compound can be achieved in a matter of
days while obtaining the high accuracy of alchemical free
energy calculations. Our results show how the accuracy of
prediction versus experiment differs with each force field for
the same free energy calculation approach. It is expected that

Figure 3. Prediction accuracy in terms of the average unsigned error (top) and Pearson correlation (bottom) with respect to convergence of the
ΔΔG estimates. For the convergence analysis, we used the measure derived by Hahn and Then,28 the application of which to the alchemical free
energy calculations we have described previously.29 The measure is defined in the range [−1;1], where the values close to 0 denote well-converged
estimates; thus, the smaller values on the x-axis denote better convergence. It is important to note that this measure only reports on the
convergence of the estimator, but does not include information on the potential lack of sampling in the relevant phase space regions for either of
the physical end states. The data points depicted in the figure were calculated by considering subsets of points below a corresponding convergence
threshold; for example, for a convergence value of 0.8, only those data points were considered that had an average convergence in the protein−
ligand branch of the thermodynamic cycle less than or equal to 0.8. The numbers in the panels indicate how many ΔΔG values were considered
given a corresponding convergence threshold. FEP+ results correspond to the Schindler et al.7 5 ns simulation protocol calculated for the same
ΔΔG values that have been identified for a corresponding convergence threshold for the simulations in the current work. The FEP+ curves in the
panels differ due to the fact that disparate ligand pairs are considered at varying convergence levels for different force fields.
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improvements in force field, such as newer versions of the
OpenFF, can lead to even better accuracy, as shown to be the
case with each newer iteration of OPLS when used with the
same FEP+ approach. A consensus approach combining the
results from multiple force fields generally additionally
improves accuracy.

■ DATA AND SOFTWARE AVAILABILITY
The calculations were performed with the publicly available
free open source software. The calculated free energy values,
ligand and protein structures, and topologies are available at
https://github.com/deGrootLab/rel_ddG_MerckDataSet_
JCIM.
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