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Abstract
Particle transport in complex environments such as the interior of living cells is often (transiently)
non-Fickian or anomalous, that is, it deviates from the laws of Brownian motion. Such anomalies
may be the result of small-scale spatio-temporal heterogeneities in, or viscoelastic properties of,
the medium, molecular crowding, etc. Often the observed dynamics displays multi-state
characteristics, i.e. distinct modes of transport dynamically interconverting between each other in
a stochastic manner. Reliably distinguishing between single- and multi-state dynamics is
challenging and requires a combination of distinct approaches. To complement the existing
methods relying on the analysis of the particle’s mean squared displacement, position- or
displacement-autocorrelation function, and propagators, we here focus on ‘scattering fingerprints’
of multi-state dynamics. We develop a theoretical framework for two-state scattering
signatures—the intermediate scattering function and dynamic structure factor—and apply it to
the analysis of simple model systems as well as particle-tracking experiments in living cells. We
consider inert tracer-particle motion as well as systems with an internal structure and dynamics.
Our results may generally be relevant for the interpretation of state-of-the-art differential dynamic
microscopy experiments on complex particulate systems, as well as inelastic or quasielastic neutron
(incl. spin-echo) and x-ray scattering probing structural and dynamical properties of
macromolecules, when the underlying dynamics displays two-state transport.

1. Introduction

Transport in complex systems such as disordered media [1], biological cells [2, 3], and cell membranes
[4, 5], frequently deviates from the laws of Brownian motion that govern the dynamics of particles in simple
media and at high dilution. The reason for the deviation from the paradigmatic Brownian behavior may be
sought in spatial obstruction and/or macromolecular crowding [2, 3, 5], viscoelastic properties of the
medium [6–10], and spatial heterogeneities [11, 12], to name but a few. Over the years a multitude of
approaches have emerged to characterize anomalous diffusion from different perspectives, and in particular
to distinguish between different modes of anomalous diffusion (for excellent reviews see e.g. [3, 4, 13–15]).

An important class of anomalous diffusion processes are multi-state dynamics—dynamics that depend
on the instantaneous value of an internal state. Examples of multi-state dynamics include stochastically
gated diffusion-controlled reactions [16–20], intermittent molecular search processes underlying cellular
gene regulation [21–23], or the center of mass diffusion of (un)folding proteins [24] or growing polymers
[25], the anomalous diffusion of membrane proteins [26], as well as tracer diffusion in heterogeneous
environments [27, 28], and most recently also in mammalian cells [29, 30].

Notwithstanding all progress in the development of analytical tools [2, 3, 13, 15, 31] it often remains
challenging to conclusively distinguish between different modes of motion observed in experiments [32],
and in particular to conclusively identify multi-state transport [33–35]. To this end, we focus on scattering
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fingerprints of multi-state dynamics, that is, on the intermediate scattering function (ISF) and dynamic
structure factor (DSF), observables that are typically monitored in neutron and x-ray scattering experiments
(for applications in the context of biophysical systems see e.g. [36–39]). The ISF and the DSF were
originally identified as key observables in scattering experiments by van Hove [40]. While the ISF was
initially introduced as an auxiliary observable in the study of the DSF, more recent methods, such as
neutron spin echo (NSE) spectroscopy [41–44], as well as modern (colloidal) particle-tracking techniques,
such as differential dynamic microscopy (DDM) [45–47] or Fourier imaging correlation spectroscopy
(FICS) [48–50], probe the ISF directly.

Motivated by recent experimental observations (see e.g. [29, 30, 51]) our aim is to employ the ISF and
DSF in the analysis of multi-state transport, more precisely, of two-state dynamics. By combining theory
and particle-tracking experiments in living cells we consider inert tracer-particle dynamics as well as
systems with internal degrees of freedom. Our results may be relevant for the interpretation of DDM
experiments on complex particulate systems, as well as neutron and x-ray scattering, when the underlying
dynamics displays two-state transport.

2. Theory

2.1. Intermediate scattering function and the dynamic structure factor
The fundamental quantities, the ISF and DSF, are calculated from the so-called van Hove function G(�r, t),
which is a generalized pair distribution function [40, 52]. In the absence of quantum effects G(�r, t) is the
density–density time-correlation function that may be interpreted as the average number of particles

(scatterers) β in a region d�r around a point
→
r +

→′
r at time t given that there was a particle (scatterer) α at a

point
→′
r at time t = 0 (whereby the initial condition

→′
r is averaged out),

Gαβ(�r, t) = 〈δ(�rβ(t) −�rα(0) −�r)〉. (1)

The brackets denote the average over an appropriate ensemble that we will specify below. For the sake of
simplicity we here focus exclusively on systems of non-interacting molecules, which, however, may possess
internal degrees of freedom. Depending on whether α = β or not (i.e. whether we consider scattering
events at an individual or two distinct scatterers) the van Hove function splits into an incoherent part
(self-part, α = β) that probes single-scatterer motions, and a coherent part (sum of distinct-part, α �= β,
and self-part) probing collective motions [52]. More precisely,

Ginc(�r, t) =
1

N

N∑
α=1

Gαα(�r, t), (2)

Gcoh(�r, t) =
1

N

N∑
α,β=1

Gαβ(�r, t), (3)

where the sum runs over all N scattering centers within a molecule and we will in addition average over an
ensemble of statistically independent trajectories of the molecule (in fact over an ensemble of many such
molecules) that we denote by 〈·〉. Depending on the experimental setup Ginc(�r, t) and Gcoh(�r, t) may [53] or
may not be monitored separately.

The intermediate scattering function (ISF; mathematically the characteristic function of displacements4)
measured in NSE, DDM and FICS is the spatial Fourier transform of Gαβ(�r, t),

Fαβ(
→
q, t) =

∫
d3r Gαβ(

→
r , t)e−i

→
q ·→r = 〈e−i

→
q ·(→r β (t)−→

r α(0))〉, (4)

while the DSF that is measured in inelastic/quasielastic scattering experiments is the space-and-time Fourier
transform of Gαβ(�r, t), i.e.

Sαβ(�q,ω) =
1

2π

∫ ∞

−∞
dt eiωtFαβ(�q, |t|) = 1

π

∫ ∞

0
dt cos(ωt)Fαβ(�q, t), (5)

or alternatively defined via the Laplace transform f̂(s) ≡
∫ ∞

0 e−st f (t)dt as

Sαβ(
→
q,ω) = π−1R[F̂αβ(

→
q, s = −iω)], where R denotes the real part.

4 If moments of the displacement are finite, the ISF as a function of q contains the complete information about the statistics of the
displacements.
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In scattering experiments the arguments �q and ω correspond to the momentum and energy transfer and
the DSF is proportional to the measured intensity [40]. In the next step we develop results for Fαβ(�q, t) and
Sαβ(�q,ω) for systems displaying two-state dynamics.

2.2. Two-state dynamics
Assuming two distinct dynamic ‘states’ interconverting in continuous time in a Markovian manner with

rates k1, k2 > 0, that is, according to the master equation �̇p(t) = K�p(t) with transition rate matrix

K =

[
−k1 k2

k1 −k2

]
. (6)

Using

peq
1 ≡ k2

k1 + k2
, peq

2 ≡ k1

k1 + k2
, (7)

the jump-propagator is diagonalized as

exp(Kt) =

(
peq

1

peq
2

)
(1, 1) + e−(k1+k2)t

(
1

−1

) (
peq

2 ,−peq
1

)
. (8)

We now assume N = 1 and drop the indices α,β; the case N > 1 is discussed in appendix A. Let
Gj(�r, t)ψj(t) denote the joint density to observe a displacement�r in a time t in dynamical state j without
changing the state, where Gj(�r, t) denotes the van Hove function for the dynamics in a single state j. Its
Fourier–Laplace transform will be denoted by

(̂Fψ)j ≡ (̂Fψ)j(�q, s) ≡
∫

d3r

∫ ∞

0
dt e−st−i�q·�rGj(�r, t)ψj(t). (9)

Often the change of state erases all memory in the sense that the propagation within each sojourn can be
assumed to be independent of the configuration just before the switch [54], as in the case e.g. when the
dynamics in both states is translation invariant. In this case the DSF and ISF of the complete two-state
dynamics can be obtained following reference [54] by a direct summation over all possible realizations of
sojourns until time t (for the derivation see appendix A). The Fourier–Laplace transform of the complete
two-state propagator, G(�r, t), in this case reads

F̂(�q, s) =
p1(̂Fψ)1

[
1 + k1(̂Fψ)2

]
+ p2(̂Fψ)2

[
1 + k2(̂Fψ)1

]
1 − k1k2(̂Fψ)1(̂Fψ)2

, (10)

where p1,2 denote the initial occupation of states. The DSF henceforth follows immediately using

S(�q,ω) =
1

π
R[F̂(�q,−iω)]. (11)

The problem of determining the ISF and DSF for two-state dynamics with ‘complete memory erasure’ upon

each change of state thus boils down to determining (̂Fψ)1,2(�q, s) in equation (9) for the specific example
under consideration. In case there is no complete memory erasure (see protein (un)folding example
section 3.4) one must solve the specific model at hand using a dedicated method or resort to
approximations. In the following we address a set of insightful and experimentally relevant scenarios of
two-state diffusion.

3. Results

3.1. Two-state diffusion
In the first example we assume that the molecule/tracer particle undergoes free Brownian motion with a
diffusion coefficient that randomly switches between values D1 and D2 in a Markovian fashion with rates k1

and k2, implying the distribution ψj(t) = e−kjt of sojourn times in the respective states. This situation arises
in the context of tracer diffusion in heterogeneous media (see e.g. [20, 27, 28]). Note that assuming sojourn
times to be independent of the dynamics within the individual states is not always justified. In particular, we
here assume an ‘annealed heterogeneity’ (see e.g. [12]). This may occur when the medium is translationally
invariant such as in the case of a state change triggered by the reversible binding to a homogeneously
distributed mobile species. In general this does not apply to quenched heterogeneous media, except in cases
where a system is observed under equilibrated conditions [55].
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The Fourier–Laplace transform of Gj(�r, t)ψj(t) defined in equation (9) reads

(̂Fψ)j(�q, s) = (̂Fψ)j(q, s) =
1

s + q2Dj + kj
, (12)

where q2 ≡ �q ·�q. Plugging equation (12) into equation (10) the Fourier–Laplace image of the complete
propagator for two-state diffusion can be written as

F̂(q, s) =
s + q2(p1D2 + p2D1) + k1 + k2

(s + q2D1 + k1)(s + q2D2 + k2) − k1k2
, (13)

with a general initial condition p1,2. Defining

μ±(q) =
q2(D1 + D2) + k1 + k2

2
±

√
[q2(D1 − D2) + k1 − k2]2

4
+ k1k2, (14)

introducing the auxiliary function

ϕ(q) ≡ q2(p1D2 + p2D1) + k1 + k2 − μ−(q)

μ+(q) − μ−(q)
, (15)

and inverting into the time domain we finally obtain

F(q, t) = [1 − ϕ(q)]e−μ+(q)t + ϕ(q)e−μ−(q)t , (16)

S(q,ω) =
1

π
R[F̂(q,−iω)] =

1

π

[1 − ϕ(q)]μ+(q)

ω2 + μ2
+(q)

+
1

π

ϕ(q)μ−(q)

ω2 + μ2
−(q)

. (17)

In contrast, in the case when the two states co-evolve as a ‘frozen mixture’—an ensemble consisting of two
types of molecules that do not interconvert between each other—with the state occupations p1,2 we have

Fmix(q, t) = p1 e−q2D1t + p2 e−q2D2t . This frozen mixture will throughout be denoted by the subscript ‘mix’,
and is the limit of equation (16) in the case of slow switching rates k1 + k2 
 q2D1,2, see appendix B.

It is also instructive to inspect the fast-switching limit, k1 + k2 � q2D1,2, where we find (for details see
appendix B) μ+(q) � q2Deff ≡ peq

1 D1 + peq
2 D2 and μ−(q) � k1 + k2 � q2D1,2, which implies simple

diffusion with an effective diffusion coefficient in agreement with intuition.
Our aim here is to demonstrate that the analysis allows to distinguish between single-state dynamics,

two-state switching diffusion and the ‘frozen mixture’ with the same stationary probabilities as long as the
switching rates are not too fast or too slow, which would give rise to the aforementioned (fast-switching)
effective diffusion and ‘frozen mixture’, respectively.

For such moderate switching rates the ISF shown in figure 1(a) and the DSF in figure 1(b) indeed reveal
distinctive characteristics of two-state diffusion (dashed lines) when compared to the ‘frozen mixture’
(black full line) as well as the two individual diffusive states (blue and green full lines, respectively). To
reduce these differences to a single observable we inspect the half width at half the maximum (HWHM) of
the quasielastic peak as a function of the switching rate (that for simplicity we set to be symmetric,
k1 = k2 ≡ k) for different initial conditions. The HWHM is determined from equation (17) by setting
S(q,ωHWHM) = S(q, 0)/2 and solving the corresponding bi-quadratic equation for ωHWHM. The results for
ωHWHM are shown in figure 1(c) and together with figures 1(a) and (b) confirm that the DSF and ISF can
reliably distinguish between a ‘non-communicating’, frozen superposition of dynamic modes and two-state
diffusion as long as the switching rates are not too fast or too slow.

Note that for an isotropic Gaussian process we have F(q, t) = e−q2〈[�r(t)−�r(0)]2〉/2d and hence ISF contains
exactly the same information as the mean squared displacement (MSD) 〈[�r(t) −�r(0)]2〉. For the individual
states as well as for effective diffusion the dynamics is Gaussian. However, two-state dynamics is typically
non-Gaussian [29] and the ISF provides more information about the dynamics. Note, moreover, that the
MSD of the two-state process reflects (normal) diffusion with effective diffusivity Deff for all switching rates
and thus alone cannot reveal underlying two-state dynamics. In the next example we turn to the switching
between two subdiffusive states.

3.2. Two-state fractional Brownian motion
Tracer transport in complex, dynamic and/or heterogeneous media such as living cells is often found to be
anomalous [2, 3, 13, 56]. Particularly interesting are situations with stochastically interconverting
anomalous diffusion processes such as the two-state anti-persistent (i.e. subdiffusive) fractional Brownian
motion (FBM) observed in recent experiments on mammalian cells [29, 30]. To be more precise, a
systematic analysis of the motion of quantum dots immersed in the cytoplasm of living mammalian cells

4
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Figure 1. (a) ISF F(q, t) for free diffusion switching between diffusion constants D1 and D2 = 10D1 with switching rates
k1 = k2 = k evolving from an initial equilibrium occupation peq

1 = peq
2 = 0.5 and time t measured in units of t0 = 1/D1q2. The

ISF for different switching rates are shown along with the limits of the frozen mix (k → 0, black curve) and the effective diffusion
(k →∞, yellow curve). (b) Dynamical structure factor corresponding to the ISF in (a). (c) Half width at half maximum
(HWHM) of the DSF from (b) are shown along with the HWHMs of the blue, green and yellow curves in (b) (dashed lines). To
compare with a non-equilibrium initial occupation, the HWHM for initial occupation p1 = 0 and p1 = 1 are also shown (green
and blue lines, respectively).

revealed two-state subdiffusive FBM with exponent α < 1 but with a stochastically switching anomalous
diffusion coefficient C1,2 [29]. Here we determine the DSF and ISF for the process as complementary
observables and apply them to the analysis of data obtained in [29] focusing on latrunculin-treated cells.
Untreated cells had been seen to feature the same dynamics [29]. Note that here a Markov switching
between the two states coexists with non-Markovian subdiffusion in each of the two states, respectively,
with a MSD 〈[�r(t) −�r(0)]2〉j = 2dCjt

αj where d (here equal two) is the dimensionality of the system, and
〈·〉j denotes the average over an ensemble of FBMs with exponent αj and coefficient Cj. Thus, there is an
inherent ambiguity in how to treat memory upon each jump. Here, in contrast to the original publication
[29], we assume for convenience that the memory in�r(t) is erased upon each change of state, which allows
us to use the result in equation (10). Notably, this choice does not affect the inferred two-state FBM, which
further substantiates the robustness of the proposed model.

We first treat the problem theoretically. The d-dimensional FBM is an isotropic and translationally
invariant Gaussian process. Thus the ISF of FBM is the characteristic function of a Gaussian process
Fj(q, t) = exp(−q2〈[�r(t) −�r(0)]2〉j/2d). Within a sojourn in state j = 1, 2 the characteristic function of the
displacement�r in a time t without changing the state is Fj(q, t)ψj(t) = exp(−[q2Cjtαj + kj]t). Its Laplace

transform (̂Fψ)j(q, s) may be written in terms of Meijer G-functions in appendix C (see equation (C.3)).

Plugging the result for (̂Fψ)j(q, s) into equation (10) yields the Laplace-transformed ISF, which we invert
numerically into the time domain. The DSF is in turn obtained fully analytically by setting s = −iω and
taking the real part as in equation (11).

The model contains six parameters C1, C2, k1, k2,α1,α2 to be determined. To minimize overfitting we fix
three parameters by considering the short-time behavior of the MSD, see dashed line in figure 2(a). We see
that the short time MSD (i.e. prior to any change of state) is well described by simple subdiffusion with
α = 0.5, and we thus fit at the first 10 seconds yielding Cshort = 0.0083 μm2 s−1/2. To reduce the number of
free parameters, we constrain ourselves to exactly reproduce this short-time behavior at times sufficiently
short to not be influenced by transitions, i.e. we fix α1 = α2 = 0.5 and peq

1 C1 + peq
2 C2 = Cshort (recall

peq
1 = k2/(k1 + k2) from equation (7)). This leaves three free parameters which we determine by a

least-squares fit simultaneously at q = 3 μm−1 and q = 7 μm−1. The fitting yields
C1 = 0.002 μm2 s−1/2, C2 = 0.052 μm2 s−1/2, k1 = 0.009 s−1, k2 = 0.063 s−1.

For the case αj = 1/2 the Fourier–Laplace transform of the joint density to observe a displacement�r in
a time t without changing the state reads (see appendix C)

(̂Fψ)j(q, s) =
1

s + kj
−

√
πq2Cj

2(s + kj)3/2
erfcx

(
q2Cj

2
√

s + kj

)
, (18)
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Figure 2. (a) MSD derived from the experiment (orange curve) and MSD simulated with fit parameters from (b) (blue curve
with blue shaded standard deviation). The gray dashed line shows a simple subdiffusive

√
t-fit to the first 10 seconds, yielding

C = 0.008 3 μm2 s−1/2. (b) ISF F(q, t) for (from top to bottom) q = 3, 5, 8, 12, 20 μm−1 from experiment (orange curve) and
theory (blue curve) with standard deviation (blue shaded) obtained from simulations (experimental and simulation details are
given in appendix D); the fitting procedure and parameters are given in the text; the range of q values was selected to capture the
spatio-temporal scales in the relaxation observed experimentally, i.e. such that F(q, t) spans the full range of values.

where erfcx(x) ≡ exp(x2)(1 − erf(x)) and erf denotes the error function. Via equation (10) and numerical
Laplace inversion this yields the two-state ISF. The theoretical ISF (blue lines) alongside the statistical
uncertainty expected from a set of 400 realizations (shaded area) and the ISF determined directly from the
experimental trajectories is shown in figure 2(b) for several values of q. The comparison between the
corresponding MSDs is shown in figure 2(a). The theoretical fit and experimental results display a good
agreement. In particular, the analysis of the ISF not only confirms the findings in reference [29] but also
demonstrates the two-state FBM to be an appropriate model for the observed dynamics over a broad range
of spatial and temporal scales. Notably, this spatio-temporally resolved information is inherently
coarse-grained out in the analysis of the MSD. Recall that because the process is not Gaussian [29] the ISF
and DSF, but not the MSD, contain the full information about the dynamics. The scattering fingerprints
proposed here are thus well suited for a deeper analysis of particle-tracking experiments displaying
multi-state anomalous diffusion.

3.3. Reversible dimerization with an internal mode
So far we have only considered two-state dynamics without any internal degrees of freedom. To go beyond
this limitation, we consider diffusion in the presence of reversible dimerization (see figure 3(a)) captured in
the mean field limit—two particles are assumed to associate with an effective rate that is independent of the
particles’ instantaneous position in the spirit of Smoluchowski [57, 58]. To be concrete, we consider
non-interacting particles diffusing freely with a diffusion coefficient D1 = D and forming a dimer with a
center-of-mass diffusion coefficient D2 = D/2 and an internal harmonic vibrational relaxation mode with
rate a (i.e. the internal coordinate—the distance between the associated particles—evolves as an
Ornstein–Uhlenbeck process [59] or Rouse model with N = 2). Note that since N > 1 in contrast to the
previous examples we here need to distinguish between coherent (i.e. equation (3)) and incoherent (i.e.
equation (2)) contributions. We focus on the incoherent part (i.e. we set α = β in equation (1)) and note
that the beads are equal and thus the beads α = 1 and α = 2 give an identical scattering contribution.

The association and dissociation rates are denoted by k1 and k2 respectively. Since the internal dynamics
does not depend on the absolute position in space and each change of state erases all memory we can
employ the result in section 2.2. In particular, this assumption neglects a possibly enhanced probability for
re-association of the same pair of molecules immediately upon dissociation, which is expected to be a good
approximation in well-mixed (i.e. ‘stirred’) systems and/or at high monomer concentrations. The opposite
case, when re-association is more likely, introduces at least one more time scale in to the kinetics of
association, thus rendering the two-state switching process non-Markovian. For the sake of simplicity we
stick to the Markovian scenario.

The Fourier–Laplace transforms of the joint density to observe a displacement�r in a time t in the

respective state 1 prior to switching, (̂Fψ)1(q, s), is given by equation (12) with D1 = D. Conversely,

introducing s′ = s + q2D/2 + k2 (note that s′ = s′(q) depends on q) we can write (̂Fψ)2(q, s) as (for a

6
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Figure 3. (a) Schematic of the dimerization process. (b) Incoherent ISF Finc(q, t) for reversible dimerization of a two-bead
(Rouse) dimer with k = k1 = k2 evolving from an equilibrium occupation p1 = p2 = 0.5 and time t measured in units of
t0 = 1/Dq2. The limit for k → 0 is the frozen mix (black curve) and for k →∞ the ISF approaches the ISF of a monomer without
dimerization (yellow curve) since the unbinding occurs before the internal mode enters the dynamics. For the explicit derivation
of this limit see appendix E. (c) DSFs corresponding to (a). (d) HWHMs of the DSF from (c) are shown along with the HWHMs
of the blue and yellow curves in (c) (dashed lines). The HWHMs for initial occupation p1 = 0 and p1 = 1 are also shown (blue
and yellow lines).

derivation see appendix E)

(̂Fψ)2(q, s′) =
1

s′
e−q2D/2a

(
q4D2/4a2

)s′/a
M

(
s′

a
,

s′ + 1

a
,

q2D

2a

)

= e−q2D/2a
∞∑

n=0

(q2D/2a)n

n!

1

s′ + na
, (19)

where M(a, b, z) denotes Kummer’s confluent hypergeometric function [60]. Using (̂Fψ)1(�q, s) and

(̂Fψ)2(�q, s′) in equation (10) we find the Laplace image of the incoherent ISF and, via equation (11), also the
incoherent DSF, where we recall that here the coherent and incoherent contribution do not coincide. The
ISF may in principle be obtained by analytical inversion of the Laplace transform. For the sake of simplicity
we here perform the inversion numerically with the fixed Talbot method.

The results for the incoherent ISF for the two-state dynamics with k1 = k2 = k alongside the frozen
mixture and dynamics in the individual pure states, all evolving from an equilibrium initial condition, are
shown in figure 3(b). The corresponding DSF is depicted in figure 3(c) and the comparison is further
clarified by means of the HWHM shown in figure 3(d). Altogether, one can distinguish between the
different situations as long as k is not too small or too large. These results demonstrate that the scattering
fingerprints proposed here may be a valuable tool for analyzing two-state dynamics also in the presence of
internal motions.

3.4. Two-state dynamics with internal structural motions—protein (un)folding
A generalization of the preceding results to two-state dynamics in the presence of some general internal
structural relaxation, such as, for example, in the case of cyclization of polymers, and the reversible
(un)folding or association of proteins, to name but a few, is much more difficult. In particular, when the
change of state does not erase all memory such that the propagation within each sojourn depends on the
internal configuration just before the switch, the results of section 2.2 cannot be applied. Such a situation
naturally arises in systems with internal (e.g. conformational) dynamics in absence of a complete time-scale
separation, i.e. when at the time of the jump the internal degrees of freedom have not yet completely relaxed
from their initial condition or the condition immediately after the preceding change of channel,
respectively. If one is to nevertheless apply a version of the theory developed here, additional simplifying
assumptions are required. In particular, we must assume that the switching rate is independent of the
instantaneous structural state in either dynamical state. Even in this case the switching between states at any
instance occurs from a distribution of structures that set the initial conditions for the relaxation following

7
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Figure 4. (a) Schematic of the Gaussian network model for the Trp-cage miniprotein construct TC5b (PDB: 1L2Y) and its
unfolding to a Rouse chain (N = 20). (b) Incoherent ISF Finc(q, t) for the (non-reversible) unfolding process with time measured
in units of t0 = 1/Dq2 and a ratio of spring and friction constant of k/ξ = t−1

0 . The dashed lines denotes various unfolding rates
ku, and the yellow curve, the ‘immediate unfolding’ limit, is obtained by setting τ = 0 in equation (22). Also depicted are the
Finc(q, t) of the respective relaxation processes of the folded protein (black line) and the Rouse chain (blue line). Time is
expressed in standard dimensionless Rouse units (see e.g. [64]). (c) Comparison of the unfolding process (dashed line) with the
time-dependent ‘mix’ (dash-dotted line) which corresponds to the superposition of the ISF of the Rouse chain and the protein
weighted by the respective time-dependent occupation of the state. (d)–(f) As in (a)–(c) but for the converse folding process.

the jump. Further, as long as the dynamical states have substantially different equilibrium structures, the ISF
is expected to depend qualitatively on q (i.e. large and intermediate scale motions are expected to differ in
contrast to individual bond vibrations at large q). In full generality this corresponds to a highly non-trivial
problem. To render the general problem analytically tractable one may, for example, inspect the limit of
slow jumps that corresponds to the switching between two equilibrium populations of internal structures.
However, this limit is rather uninteresting as the state switching is too slow to mix the dynamics of the
individual states, i.e. deviations form a ‘frozen mix’ are small. However, it is easy to instead look at the
two-state dynamics with unidirectional/irreversible jumps evolving from a pure state (i.e. from either of the
states). A neat and experimentally interesting problem is the denaturant-driven unfolding [61, 62] or
folding [63] of proteins. To this end we analyze the irreversible unfolding/folding of the small 20-residue
Trp-cage protein construct TC5b into/from a Rouse chain (N = 20). That is, we consider a sample initially
prepared in the folded state that unfolds with rate ku (figure 4(a)), and an initially unfolded (Rouse chain)
state folding with a rate kf , respectively (figure 4(d)).

A Gaussian elastic network model [64, 65] of TCPb in the folded state was constructed from the Protein
Data Bank (PDB entry: 1L2Y) using the ProDy software [66], yielding a Kirchoff matrix Af with
dimensional non-zero entries that are integer multiples of k/ξ where k and ξ are the spring and friction
constant, respectively. Conversely, Rouse chain dynamics with connectivity matrix Au [67] were assumed in
the unfolded state. Af and Au are given explicitly in appendix F. For simplicity, in both cases the diffusion
matrix is supposed to be equal and diagonal (isotropic) with diffusion coefficient D = kBT/ξ for each
individual bead. A schematic of the bead-spring model is shown in figures 4(a) and (d).

Introducing the 3N-dimensional vector of beads’ positions R ≡ {�Rα}α=1,...,N the equations of motion in
each state follow a 3N-dimensional Ornstein–Uhlenbeck process with positive semi-definite drift matrix
Af/u, i.e. dRt = −Af/uRt dt +

√
2D dWt in the respective state f and u, where W denotes a 3N dimensional

vector whose entries are statistically independent Wiener processes Wt. This process describes the

8
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overdamped thermal motion of beads connected by Hookean springs with zero rest length. The analysis is
most easily carried out in the respective normal coordinates Xf/u = (Qf/u)TR with

(Qf/u)TAf/uQf/u = diag (af/u
α )α=1,...,N . For details see appendix F. We choose α = 1 to represent the

centre-of-mass mode. The center-of-mass diffusion coefficient is given by DCOM = D/N and within this
model does not depend on the conformation of the protein. For all but the center-of-mass mode the
equilibrium probability density function is Gaussian with zero mean and variance Vα

f/u.
To illustrate the theory it suffices to consider the folding-process alone. Let us consider the propagation

in the unfolded state u evolving from the Rouse chain equilibrium distribution. We are interested in the
αβ-component of the ISF of the folding process, Fαβ(�q, t), assuming no or a single jump occurring at time
τ with 0 < τ < t, where τ is exponentially distributed with rate k. Let Fαβ

u (�q, t) be the ISF of the pure
unfolded state (Rouse) dynamics. As we have excluded jumps back to the folded state it is obvious that
Fαβ(�q, t) corresponds to Fαβ

u (�q, t) weighted by the probability e−kt that no jump has occurred until time t,
and a contribution of the folding. The latter corresponds to the dynamics in the folded state starting with a
jump at the time τ and evolving from the equilibrium distribution of the unfolded (Rouse chain) state,
Fαβ

u→f(�q, t; τ), averaged over the exponentially distributed jumping times5, i.e.

Fαβ(�q, t) = e−ktFαβ
u (�q, t) +

∫ t

0
dτ k e−kτFαβ

u→f(�q, t; τ). (20)

Since the Ornstein–Uhlenbeck process with a Gaussian initial condition is a Gaussian process, Fαβ
u (�q, t) and

Fαβ
u→f(�q, t; τ) are characteristic functions (see e.g. equation (4)) of zero mean Gaussian displacements and

thus simply equal to exp[−q2〈(�Rα
t − �Rβ

0 )2〉
u/u

τ→f
/6], see appendix F. Via normal mode analysis (see, e.g.

[68]) we show in appendix F that the displacement vectors 〈(�Rα
t − �Rβ

0 )2〉
u/u

τ→f
obey

〈(
�Rα

t − �Rβ
0

)2
〉

u

= 6DCOMt +
N∑

γ=2

Vγ
u

[
(Qu

αγ)2 + (Qu
βγ)2 − 2Qu

αγQu
βγ e−au

γ t
]

, (21)

when the Rouse polymer does not fold until t, whereas in the case that folding occurs at a fixed time τ we

find, introducing the notation Qu→f = (Qf)TQu (s.t. analogous to Rt = Qf/uXf/u
t we have Xf

t = Qu→fXu
t ),〈(

�Rα
t − �Rβ

0

)2
〉

u
τ→f

= 6DCOMt +
N∑

γ=2

(Qu
βγ)2Vγ

u +

N∑
γ=2

(Qf
αγ)2Vγ

f

[
1 − e−2af

γ (t−τ)
]

+

N∑
ω=2

Vω
u

[
N∑

γ=2

Qf
αγQu→f

γω e−af
γ(t−τ)

]2

− 2
N∑

ω,γ=2

Qf
αωQu→f

ωγ Qu
βγVγ

u e−af
ω(t−τ)−au

γτ . (22)

The converse unfolding process is obtained by interchanging u ↔ f . Plugging equations (21) and (22) into
equation (20) and performing a numerical integration over τ yields the result for Fαβ(�q, t). Summations
over α,β deliver the (in)coherent ISF, see equations (2) and (3).

In figures 4(b), (c), (e) and (f) we show, respectively, the incoherent part of the ISF for various
unfolding and folding rates. The limit of large (un)folding rates is given by setting τ = 0 in the Gaussian
ISF for the displacement vector from equation (22). The discrepancy between the immediate (un)folding
limit and dynamics in the target (un)folded structure (yellow and blue curves in figures 4(b) and (e),
respectively) is solely caused by the different initial conditions whereas the propagator is in both cases
identical. Notably, this difference is small in the unfolding process but substantial during folding. Several
additional remarks are in order. The ISF reflects dynamics on a given spatial (i.e. q-value) scale and thus the
projections onto different relaxation eigenmodes play an important role (see also e.g. [69]). The
aforementioned discrepancies are a result of initial conditions (and starting conditions upon a jump) that
put more weight onto faster relaxation modes rendering the decay of the ISF faster (this idea is
corroborated in figure 4(e)). Note that relaxation in the folded state is faster than in the unfolded and yet
the ISF in the folded state in figure 4(b) decays the slowest. This means that said differences are not only
caused by a shorter relaxation time (i.e. larger principal eigenvalue of the underlying generator).

For a comparison, in figures 4(c) and (f) we also show the incoherent ISF for the time-dependent mix,
Fmix

u/f (�q, t) ≡ e−ku/ft
∑

α Fαα
f/u(�q, t) + (1 − e−ku/ft)

∑
α Fαα

u/f(�q, t), which represents the trivial time-dependent
approximation of the ISF for the unfolding and folding processes, respectively. In the case of unfolding the
(trivial) mix displays qualitative differences with respect to exact the two-state (single jump) solution but

5 It is straightforward to include non-exponential jumping-time distributions.
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the quantitative differences are rather small (see figure 4(c)). Conversely, in the case of folding the
mix-approximation Fmix

f fails completely (see figure 4(f)) due to the striking dependence on the initial
condition that is not included in the (trivial) mix. This clearly illustrates the importance of considering
jump dynamics explicitly.

Overall, our results suggest that scattering fingerprints may be a useful observable to probe two-state
dynamics even in the presence of non-trivial internal structural relaxation, such as e.g. probed in references
[61–63]. A systematic study of the relaxation at various values of the dimensionless quantities ku,f t0 and
t0k/ξ may provide further details, which is, however, beyond the scope of the present proof-of-principle
investigation. Moreover, one can easily generalize the model to include internal friction [70] or
hydrodynamic interactions in the spirit of the Zimm model [71]. Finally, one may also consider springs
with a non-zero rest length in the context of so-called Gaussian models (see e.g. [64]).

4. Conclusion

Scattering experiments on polymerizing chains revealed pronounced signatures of multi-state dynamics
[51]. Moreover, observations of particle transport in complex environments such as the interior of living
cells often reveal a non-Fickian (or non-Brownian) character that may also display multi-state
characteristics [16–24, 27–29]. Reliably distinguishing between single- and multi-state dynamics remains
challenging. To complement the existing approaches we addressed scattering fingerprints of two-state
dynamics—the ISF and structure factor. A combination of theory, analysis of simple model systems and of
experiments in living cells revealed the potential usefulness of these scattering fingerprints.

We addressed both, inert tracer-particle dynamics as well as dynamics in systems with an internal
structure and dynamics. In all examples the ISF decays faster for increasing switching rates, which is
consistent with the idea of an additional relaxation channel enabling a faster decay [72, 73]. However, this
view contradicts the multi-state dynamics in [51], where an empirical ansatz assumed a mode-scission that
leads to a slower decay of the ISF.

The present results can be extended to incorporate non-Markovian (i.e. non-exponential) waiting time
statistics in the respective states (see e.g. [74–76]), and may be relevant and useful for digital Fourier
microscopy (DDM and FICS) experiments on complex particulate systems, as well as neutron (incl.
spin-echo) and x-ray scattering probing structural and dynamical properties of macromolecules, as soon as
the dynamics displays two-state transport.
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Appendix A. Derivation of equation (10)

Here we derive equation (10) for the Laplace-transformed ISF of the two-state dynamics following the
reference [54]. For this approach to hold, memory in the process has to be erased at the instance of the
jump and the instantaneous position at the jump must not influence the probability of subsequent
displacements. These assumptions can arise as a consequence of translation invariance of the dynamics in
single dynamical states, as in the examples of two-state diffusion and FBM. However, translation invariance
is not a necessary condition, as e.g. in the case of the process studied in [54].

For a Markov jump process the probability to remain in a state for a time t is given by ψj(t) = e−kjt .
Recall that the van Hove functions Gj(�r, t) = 〈δ(�r(t) −�r(0) −�r)〉j in the two individual states j = 1, 2 give
the probability of performing a displacement�r in time t. We now set N = 1 and omit the indices α,β
compared to equation (1). For N > 1 the assumption of memory erasure is rarely satisfied as a result of
internal dynamics (see e.g. section 3.4). If it is satisfied also for N > 1, as e.g. in section 3.3 where N = 2,
then for α = β the approach does not change and equation (10) gives an equation for F̂αα(�q, s) that can
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subsequently be summed over α. For α �= β only the displacement probability prior to the first memory
erasure is different, and the approach below may applied with slight modifications.

Following [54], we write down the probability Pn(�r, t) of a displacement�r in time t conditioned on a
fixed number of n jumps for n = 0, 1, 2, given that we start in state 1 at t = 0, and adopting the notation
Gj(�r, t)ψj(t) ≡ (Gψ)j(�r, t),

P0(�r, t) = (Gψ)1(�r, t)

P1(�r, t) =

∫
d3r1

∫ t

0
dt1k1(Gψ)1(�r1, t1)(Gψ)2(�r −�r1, t − t1)

P2(�r, t) =

∫
d3r1

∫
d3r2

∫ t

0
dt2

∫ t2

0
dt1 k1(Gψ)1(�r1, t1)k2(Gψ)2(�r2 −�r1, t2 − t1)×

(Gψ)1(�r −�r2, t − t2). (A.1)

By the assumption of independence of the position at the time of the jump, this has a convolution structure
in space and we Fourier transform�r →�q, P → P̃ to obtain, e.g. for n = 2,

P̃2(�q, t) =

∫ t

0
dt2

∫ t2

0
dt1 k1

˜(Gψ)1(�q, t1)k2
˜(Gψ)2(�q, t2 − t1)˜(Gψ)1(�q, t − t2). (A.2)

Recalling that the ISF F(�q, t) is the Fourier transform of the van Hove function G(�r, t), and noting the
convolution structure (defined as [f ∗ g](t) ≡

∫ t
0 dt′f (t′)g(t − t′)) in time, we have

P̃2(�q, t) =

∫ t

0
dt2

∫ t2

0
dt1 k1(Fψ)1(�q, t1)k2(Fψ)2(�q, t2 − t1)(Fψ)1(�q, t − t2)

= k1k2

∫ t

0
dt2(Fψ)1(�q, t − t2)

[
(Fψ)1(�q, ·) ∗ (Fψ)2(�q, ·)

]
(t2)

= k1k2 [(Fψ)1 ∗ (Fψ)1 ∗ (Fψ)2] (�q, t). (A.3)

Taking the Laplace transform t → s gives

P̂2(�q, s) = k1k2

[
(̂Fψ)1(�q, s)

]2
(̂Fψ)2(�q, s). (A.4)

This generalizes to all even n = 2m and odd n = 2m + 1 terms as

P̂2m+1(�q, s) = km+1
1 km

2

[
(̂Fψ)1(�q, s)

]m+1[
(̂Fψ)2(�q, s)

]m+1
,

P̂2m(�q, s) = km
1 km

2

[
(̂Fψ)1(�q, s)

]m+1[
(̂Fψ)2(�q, s)

]m
. (A.5)

The Fourier–Laplace transform of the probability of a displacement in the two-state dynamics that by the
assumption of memory erasure and independence of the jump position is the Laplace-transformed ISF
F̂(�q, s), is then given by the geometric series

F̂(�q, s) =
∞∑

n=0

P̂n(�q, s)

=

∞∑
m=0

[
P̂2m(�q, s) + P̂2m+1(�q, s)

]

= (̂Fψ)1(�q, s)
[

1 + k1(̂Fψ)2(�q, s)
] ∞∑

m=0

[
k1k2(̂Fψ)1(�q, s)(̂Fψ)2(�q, s)

]m

= (̂Fψ)1(�q, s)
1 + k1(̂Fψ)2(�q, s)

1 − k1k2(̂Fψ)1(�q, s)(̂Fψ)2(�q, s)
. (A.6)

Assuming initial occupations pj of the two states (not necessarily pj = peq
j ), and repeating the same

treatment for starting conditions in state 2 yields the result equation (10),

F̂(�q, s) =
p1(̂Fψ)1

[
1 + k1(̂Fψ)2

]
+ p2(̂Fψ)2

[
1 + k2(̂Fψ)1

]
1 − k1k2(̂Fψ)1(̂Fψ)2

. (A.7)
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Appendix B. Two-state diffusion in the slow- and fast-switching limit

Here we consider the slow-switching limit of two-state diffusion in section 3.1, that is, the limit of small
switching rates, k1 + k2 
 q2D1,2. In this limit, equation (14) gives μ+ ≈ q2D1 and μ− ≈ q2D2. Since
p2 = 1 − p1 we obtain φ(q) ≈ p2 and thus equation (16) in the slow-switching limit results in the frozen
mixture,

F(q, t) ≈ p1 e−q2D1t + p2 e−q2D2t = Fmix(q, t). (B.1)

Now consider the fast-switching limit, k1 + k2 � q2D1,2 with a finite ratio k1/k2 = peq
2 /peq

1 (when this
ratio is zero or infinite we recover single-state dynamics). We introduce the notation k ≡ (k1 + k2)/2,
κ ≡ (k1 − k2)/2, d̄ ≡ q2(D1 + D2)/2 and Δ ≡ q2(D2 − D1)/2. Then equation (14) reads

μ1,2 = d̄ + k ±
√

(Δ+ κ)2 + k2 − κ2

= d̄ + k ±
√
Δ2 + 2Δκ+ k2. (B.2)

In the limit of fast jumps k � d̄ > |Δ| we have

μ1,2 = d̄ + k ± k

√
1 +

2Δκ+Δ2

k2
≈ d̄ + k

[
1 ±

(
1 +

2Δκ+Δ2

2k2

)]
,

μ1 ≈ d̄ − 2Δκ+Δ2

2k
≈ d̄ − κ

k
Δ, μ2 ≈ d̄ + 2k +

2Δκ+Δ2

2k
≈ 2k

k→∞−→∞. (B.3)

Using equation (7), we have k1 = 2peq
2 k and k2 = 2peq

1 k and arrive at

μ1 ≈ d̄ − κ

k
Δ = d̄ +Δ

peq
2 − peq

1

peq
2 + peq

1

= q2(peq
1 D1 + peq

2 D2). (B.4)

Thus, the exponential with rate μ1 in equation (16) gives an exponential with effective diffusion constant
Deff ≡ peq

1 D1 + peq
2 D2, while the second exponential with rate μ2 ≈ 2k immediately decays in the limit of

large k. This proves that for large k the ISF of two-state diffusion approaches effective diffusion, i.e. in
figure 1(a) the dashed lines approach the yellow line.

Appendix C. Laplace transforms for fractional Brownian motion

We consider FBM in d dimensions with MSD〈
[�r(t) −�r(0)]2

〉
= 2dCjt

αj . (C.1)

Here, the two different states are characterized by different generalized diffusion constants C1 and C2 and/or
different ‘anomalous’ exponents α1 and α2. We still consider Markov jumps and by Gaussianity we have the
Fourier-transformed displacement probabilities in a state

Fj(�q, t)ψj(t) = exp(−[q2Cjt
αj + kj]t). (C.2)

Assuming that each jump (i.e. change of state) erases memory the structure factor for the two-state
dynamics follows from equation (10) which requires taking the Laplace transform of equation (C.2). For
our purposes we consider subdiffusive FBM with α ∈ (0, 1) (for α = 1 see equation (12)). The Laplace
transform of equation (C.2) can of course be performed numerically [77], and for any rational α ∈ (0, 1) it
can be expressed in terms of Meijer G-functions, using that for two positive integers l < m [78]

̂[e−atl /m ](s) =

√
ml

s(2π)(m+l)/2−1
Gm,l

l,m

(
amll

mmpl

∣∣∣∣ Δ(l, 0)

Δ(m, 0)

)
. (C.3)

For the special case α = 0.5 the Laplace transform of equation (C.2) follows from [78]

̂[e−a
√

t](s) =
1

s
− a

2

√
π

s3
erfcx

(
a

2
√

s

)
, (C.4)

where erfcx(x) = exp(x2)(1 − erf(x)) and erf denotes the error function, and therefore

(̂Fψ)j(�q, s) =
1

s + kj
−

√
πq2Cj

2(s + kj)3/2
erfcx

(
q2Cj

2
√

s + kj

)
. (C.5)
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Figure C1. Illustration of the asymptotics for the DSF as introduced in equation (11). Time is measured in units of
t0 = 1/(C2

1q4). The large-ω series (C.6) and the small-ω expansion (C.7) together give a very good approximation to the exact
DSF, i.e. the Fourier transform of equation (C.2) with k = 0.

Inserting s = −iω and taking the real part as in equation (17), we obtain the DSF. Numerically
transforming back to the time-domain in turn yields the ISF.

For α �= 0.5, instead of using Meijer-G-functions or numerical solutions we can perform a series
expansion [77]. We expand e−ctα around t = 0∫ ∞

0
e−st e−ctα dt =

∞∑
n=0

(−1)ncn

n!

∫ ∞

0
e−st tnαd t

=

∞∑
n=0

(−1)nΓ(αn + 1)

n!
cns−(αn+1), (C.6)

where the sum and integral commute since the sum is bounded by e−ctα , c > 0 which is integrable for
α < 1. A series for the Laplace transform of equation (C.2) is obtained by shifting s �→ s + kj and using
c = q2Cj. This approximation works particularly well for or small q, not too small s, k and α < 1 not too
close to 1.

The complementary expansion for small s reads∫ ∞

0
e−st e−ctα dt ≈

N∑
n=0

(−1)nsn

n!

∫ ∞

0
tn e−ctα dt

=
1

α

N∑
n=0

(−1)n

n!
Γ

(
n + 1

α

)
c−

n+1
α sn. (C.7)

However, note that for α < 1 this series is only asymptotically convergent [77], and therefore has to be
truncated at some finite N to be able to swap the integration and summation. We use this expansion in the
very small s regime in cases where the expansion (C.6) does not suffice.

The two asymptotic results combined yield a very good approximation as illustrated for the DSF of an
FBM in figure C1 (recall that the DSF follows from the Laplace transform of equation (C.2) for kj = 0 by
setting s = −iω and taking the real part as in equation (11)). Combining the two expansions allows for

efficient computation of (F̂ψ)(q, s) and S(q,ω) over the whole ω regime for general α ∈ (0, 1), which in
turn allows via equation (10) to deduce the two-state ISF.

Appendix D. Simulation details

The experimental data shown in figure 2 consists of 200 two-dimensional trajectories which by assuming
isotropy are treated as 400 one-dimensional realizations of the two-state FBM. The experimental ISF is
obtained by averaging e−iq[r(t)−r(0)] over the 400 realizations. Although the ISF of the model is deterministic,
the experimental ISF obtained from a finite number of realizations fluctuates around the deterministic ISF.
To estimate these fluctuations we performed simulations of 20 000 = 500 × 400 two-state FBM trajectories
with the parameters obtained by the fit. The standard deviation in each point of the ISF averaged over sets
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of 400 trajectories is shown in figure 2. Moreover, the MSD and its fluctuations upon averaging over 400
realizations are obtained from the simulations and shown in figure 2.

Simulations were performed by drawing exponentially distributed waiting times for the state switching
and simulating FBM trajectories between the switching times. The FBM simulations were performed using
the Davies–Harte-algorithm [79] using the ‘fbm’ python package available on PyPI.

Appendix E. Details on dimerization with an internal mode

The ISF of the dimer is the characteristic function of a Gaussian with displacement given by equation (21)
for N = 2 for which

A =

[
1 −1
−1 1

]
, Q =

1√
2

[
1 −1
1 1

]
. (E.1)

With DCOM = D2 = D/2, V(∞) = 3D/a and ψ2(t) = e−k2t we obtain

(Fψ)2(q, t) = exp

[
−q2D2t − k2t − q2D

2a

(
1 − e−at

)]
= e−

q2D
2a e−(q2D2+k2)t exp

(
q2D

2a
e−at

)
, (E.2)

where for convenience we have assumed equilibrium initial conditions of the dimer.
The Laplace transform can be conveniently carried out via a series expansion (the order of summation

and integration can be interchanged due to dominated convergence, i.e. since the series is bounded from
above by the full expression),

(̂Fψ)2(q, s) = e−
q2D
2a

∫ ∞

0
dt e−(s+q2D2+k2)t exp

(
q2D

2a
e−at

)

= e−
q2D
2a

∞∑
n=0

(
q2D
2a

)n

n!

∫ ∞

0
dt e−(s+q2D2+k2+na)t

= e−
q2D
2a

∞∑
n=0

(
q2D
2a

)n

n!

1

s + q2D2 + k2 + na
. (E.3)

The series expansion converges very well, especially for small q and large t (or small ω). Note that there

exists a closed form expression of (̂Fψ)2(q, s) in terms Kummer’s hypergeometric function [78] (or in terms
of the incomplete gamma function [37]) as in equation (19).

In the limit of fast jumps k1, k2 � q2D the time spent in a single state prior to a jump becomes very
small, at 
 1, for which we expand

(Fψ)2(�q, t) = e−
q2D
2a e−(q2D2+k2)t exp

(
q2D

2a
e−at

)
t→0≈ e−

q2D
2a e−(q2D2+k2)te

q2D
2a (1−at)

= e−(q2D+k2)t

= F1(�q, t)ψ2(t). (E.4)

Therefore, for k1, k2 � q2D the two-state ISF converges to the simple monomer diffusion, i.e. the dashed
lines approach the yellow line in figure 3(b).

Appendix F. Two-state dynamics with internal structure/dynamics—irreversible
protein (un)folding

Here we derive equations (21) and (22) using normal mode analysis as introduced in section 3.4, i.e. in the

normal coordinates Xf/u = (Qf/u)TR with (Qf/u)TAf/uQf/u = diag (af/u
α )α=1,...,N . The drift matrix Af/u can be

considered as N × N-dimensional since the model assumes isotropy in all three dimensions and thus each
eigenspace of the 3N × 3N drift matrix is threefold degenerate. Note that (Qf/u)−1 = (Qf/u)T, and in normal
coordinates (omitting index f/u) we have d�Xα

t = −aα�Xα
t dt +

√
2D d �Wα

t .
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We choose the first mode α = 1 to correspond to the zero eigenvalue, i.e. a1 = 0 and thus �X1
t evolves as

a free diffusion, capturing to the center-of-mass motion with Qf/u
α1 = N−1/2 and DCOM = D/N. The position

at time t = 0 of the center of mass cancels out in all displacements and only differences between time 0 and
t enter. Thus, whenever we speak of the equilibrium initial conditions we refer to the equilibrium of modes
�Xα, α > 1, and the initial condition of the �X1-mode is irrelevant.

The �Xα modes with α > 1 have aα > 0 and are thus described by an Ornstein–Uhlenbeck process [59],
for which we obtain from the stochastic differential equation that for any τ ∈ [0, t]

d
〈
�Xα

t′ · �X
β
0

〉
= −aα

〈
�Xα

t′ · �X
β
0

〉
dt′ ⇒

〈
�Xα

t · �Xβ
0

〉
= e−aα(t−τ)

〈
�Xα
τ · �Xβ

0

〉
, (F.1)

and using Itô’s lemma as well as the shorthand notation Vα(t) = 3D
aα

(1 − e−2aαt),

d
〈
�Xα

t′ · �X
β
t′

〉
=

〈
d�Xα

t′ · �X
β
t′

〉
+

〈
�Xα

t′ · d�Xβ
t′

〉
+

1

2

〈
d�Xα

t′ · d�Xβ
t′

〉
= −(aα + aβ)

〈
�Xα

t′ · �X
β
t′

〉
dt′ + 3Dδαβ dt′

⇒
〈
�Xα

t · �Xβ
t

〉
=

〈
�Xα
τ · �Xβ

τ

〉
e−(aα+aβ )(t−τ) + δαβVα(t − τ), (F.2)

and thus for equilibrium initial conditions
〈
�Xα

t · �Xβ
t

〉
eq
= δαβVα(∞) ≡ δαβVα.

Since the Ornstein–Uhlenbeck process with a Gaussian initial condition is a Gaussian process, Fαβ
u (�q, t)

and Fαβ
u→f(�q, t; τ) are characteristic functions, of zero mean Gaussian displacement vectors. For any real

Gaussian stochastic process Yt, 0 � t � T the characteristic function of the joint probability distribution of
the random variablesYt1 . . .Ytn with0� t1 . . . tn �T (n < ∞) is given by φ(q1 . . . qn) = exp(i

∑n
k=1〈Ytk〉qk

−
∑n

k,l=1〈[Ytk − 〈Ytk〉][Ytl − 〈Ytl 〉]〉qkql/2), which naturally generalizes to d-dimensional Gaussian

stochastic process with vector values �Yt = (Y1
t , . . . , Yd

t ) (d < ∞) [80]. In our case we have
�Ytk =

�Rα
tk
− �Rβ

tk−1
, n = 1, and 〈�Y tk〉 = 0, ∀ tk because all involved Gaussian distributions are centered at

zero, and the additional factor of 1/3 in q2/6 is due to isotropy. Therefore,
Fαβ

u/u
τ→ f

(�q, t) = exp[−q2〈(�Rα
t − �Rβ

0 )2〉
u/u

τ→ f
/6] and we only need to compute the squared displacements

〈(�Rα
t − �Rβ

0 )2〉
u/u

τ→ f
to obtain the ISFs.

We first consider the single-state process, say in the unfolded state u, with equilibrium initial conditions
and now derive the result equation (21). Using normal coordinates R = QuXu (from now on omit index u
in Xu), the independence of modes, and that the mean value vanishes, we obtain〈[

�Rα
t − �Rβ

0

]2
〉

u

=

〈[
N∑

γ=1

(
Qu

αγ
�Xγ

t − Qu
βγ
�Xγ

0

)]2〉
u

=

N∑
γ=1

〈(
Qu

αγ
�Xγ

t − Qu
βγ
�Xγ

0

)2
〉

u

. (F.3)

The center-of-mass motion with DCOM = D/N is obtained from Qu
α1 = Qu

β1 = N−1/2. Using equations (F.1)
and (F.2) we directly obtain the result equation (21),〈(

�Rα
t − �Rβ

0

)2
〉

u

= 6DCOMt +
N∑

γ=2

Vγ
u

[
(Qu

αγ)2 + (Qu
βγ)2 − 2Qu

αγQu
βγ e−au

γ t
]
. (F.4)

We now consider the process with a single jump at a fixed time τ < t, i.e. we start in the equilibrium of
the unfolded u-state and propagate in the u-state from time 0 to τ and in the folded f-state from time τ to
t. Averages with respect to this process will be denoted by 〈·〉

u
τ→f

. Within the Gaussian network model the
center-of-mass motion is independent of the network structure and we obtain similar to above (but now the
modes are mixed due to Qu �= Qf and thus no longer decouple),〈(

�Rα
t − �Rβ

0

)2
〉

u
τ→f

= 6DCOMt +
N∑

γ,ν=2

[
Qu

αγQu
αν

〈
(Xf

t)γ · (Xf
t)ν

〉
u
τ→f

+ Qu
βγQu

βν

〈
(Xf

0)γ · (Xf
0)ν

〉
u
τ→f
− 2Qu

αγQu
βν

〈
(Xf

t)γ · (Xf
0)ν

〉
u
τ→f

]
. (F.5)

Now we determine the three terms
〈

(Xf
t)γ · (Xf

t)ν
〉

u
τ→f

,
〈

(Xf
0)γ · (Xf

0)ν
〉

u
τ→f

and
〈

(Xf
t)γ · (Xf

0)ν
〉

u
τ→f

. The first

term resembles
〈

(Xf
t)γ(Xf

t)ν
〉

f
= δγνVγ

f with the difference that we do not start in the f-equilibrium but
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propagate the f-process from the u-equilibrium from time τ to t. In particular, modes are mixed since
correlations at time τ are only diagonal in u-normal modes Xu but not in Xf . Using equation (F.2) we have〈

(Xf
t)γ · (Xf

t)ν
〉

u
τ→f
=

〈
(Xf

τ )γ · (Xf
τ )ν

〉
u
τ→f

e−(aγ+aν )(t−τ) + δγνVγ(t − τ). (F.6)

Since we start in u-equilibrium and propagate in the u-process until time τ , we complete the calculation of
the first term by calculating the second term, by expressing f-modes in terms of u-modes. Using the
notation Qu→f ≡ (Qf)TQu (s.t. as in R = QuXu = Qf Xf we have Xf = Qu→f Xu),〈

(Xf
τ )γ · (Xf

τ )ν
〉

u
τ→f
=

〈
(Xf

0)γ · (Xf
0)ν

〉
u
τ→f
=

〈
(Xf

0)γ · (Xf
0)ν

〉
u

=

N∑
ω=2

Qu→f
γω Qu→f

νω Vω
u . (F.7)

For the third term we employ equation (F.1) for the f-process from time τ to t and for the u-process from 0
to τ , 〈

(Xf
t)γ · (Xf

0)ν
〉

u
τ→f
= e−af

γ(t−τ)
〈

(Xf
τ )γ · (Xf

0)ν
〉

u
τ→f

= e−af
γ(t−τ)

N∑
ω,ω′=2

Qu→f
γω Qu→f

νω′ 〈(Xu
τ )ω · (Xu

0)ω′ 〉u

= e−af
γ(t−τ)

N∑
ω=2

Qu→f
γω Qu→f

νω Vω
u e−au

ωτ . (F.8)

Combining equations (F.5) and (F.8) and using
∑

γν CγCν = (
∑

γCγ)2 and for the last term Qf Qu→f = Qu

we arrive at the result equation (22),

〈(
�Rα

t − �Rβ
0

)2
〉

u
τ→f

= 6DCOMt +
N∑

γ=2

(Qu
βγ)2Vγ

u +

N∑
γ=2

(Qf
αγ)2Vγ

f (t − τ)

+

N∑
ω=2

Vω
u

[
N∑

γ=2

Qf
αγQu→f

γω e−af
γ(t−τ)

]2

− 2
N∑

ω,γ=2

Qf
αωQu→f

ωγ Qu
βγVγ

u e−af
ω(t−τ)−au

γτ . (F.9)

Finally, for completeness we here show the Kirchoff matrix Af corresponding to the Trp-cage
miniprotein construct TC5b (PDB: 1L2Y)

Af =
k

ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 9 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 −1

−1 −1 11 −1 −1 −1 −1 −1 0 0 −1 0 0 0 0 0 0 −1 −1 −1

−1 −1 −1 10 −1 −1 −1 −1 −1 0 −1 0 0 0 0 0 0 0 −1 0

−1 −1 −1 −1 11 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 −1 0

−1 −1 −1 −1 −1 16 −1 −1 −1 −1 −1 −1 0 −1 0 −1 −1 −1 −1 0

−1 −1 −1 −1 −1 −1 14 −1 −1 −1 −1 −1 −1 −1 0 0 0 −1 0 0

0 0 −1 −1 −1 −1 −1 9 −1 −1 −1 0 0 −1 0 0 0 0 0 0

0 0 0 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 −1 −1 −1 −1 −1 11 −1 −1 −1 −1 −1 −1 0 0 0 0

0 0 −1 −1 −1 −1 −1 −1 −1 −1 15 −1 −1 −1 −1 −1 −1 −1 0 0

0 0 0 0 0 −1 −1 0 −1 −1 −1 11 −1 −1 −1 −1 −1 −1 0 0

0 0 0 0 0 0 −1 0 −1 −1 −1 −1 9 −1 −1 −1 −1 0 0 0

0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 11 −1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 8 −1 −1 0 0 0

0 0 0 0 0 −1 0 0 −1 −1 −1 −1 −1 −1 −1 11 −1 −1 −1 0

0 0 0 0 0 −1 0 0 0 0 −1 −1 −1 −1 −1 −1 10 −1 −1 −1

0 −1 −1 0 0 −1 −1 0 0 0 −1 −1 0 0 0 −1 −1 10 −1 −1

0 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1 −1 −1 9 −1

0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(F.10)
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and the 20 × 20 tridiagonal Kirchoff matrix Au for the unfolded Rouse chain

Au =
k

ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1 0

−1 2 −1
. . . . . .

. . . . . .

0 −1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (F.11)
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