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In this Supplementary Information we summarize the calculations leading to the results presented in the main text.

S1. ON THE LAPLACE TRANSFORM OF THE FPT DENSITY WITH FINITE MOMENTS

In the main text we demand that 0 < 〈Tn(x0)〉 < ∞ for ∀n. In other words, ℘̃(s) is the Laplace transform of
a normalized smooth density with positive support and is differentiable at zero infinitely many times and therefore
admits a power series representation, ℘̃(s) =

∑∞
n=0(−s)n〈Tn(x0)〉/n! with a convergence radius −∞ < s < λ0. We

assume that ℘̃(s) has no branch point (at least) in this region of convergence. Moreover, we limit the discussion to

the situations, in which limn→∞
g(n)

h(n) <∞ (in fact it turns out that limn→∞
g(n)

h(n) = 0). Both assumptions are satisfied
in all systems/models addressed herein. Herefrom follows the representation [1]

℘̃(s) =
g(s;x0)

h(s;xa)
=

∑∞
k=0 g

(k)(x0)sk/k!∑∞
k=0 h

(k)(xa)sk/k!
=

∞∑
n=0

(−s)n

n!
〈Tn〉, (S1)

where

〈Tn〉 = (−1)n
g(n)

h(0)
−

n∑
k=1

(−1)k
(
n

k

)
h(k)

h(0)
〈Tn−k〉. (S2)

All g(n), h(n) must be finite and the moment expansion in Eq. (S1) converges for −∞ < Re(s) < λ0. The positivity
and finiteness of the moments impose bounds on g(n), h(n), which are, however, not sharp [2]. It appears, nevertheless,

that these bounds generally assure limn→∞
g(n)

h(n) <∞ (see specific examples in S3). Moreover, the roots of the analytic
functions g(s;x0) and h(s;xa) are distinct [1] and the smallest eigenvalue −λ0 < 0 (note that λ0 is real) must be a
simple pole of ℘̃(s) as the opposite would imply that the leading order term for t → ∞ would be ∝ te−λit. We also
demand that ℘̃(s) has no branch points along the negative real axis, which is the case in all studied examples.

S2. ASYMPTOTIC INVERSION OF ℘̃(s)

In order to invert ℘̃(s) to obtain the long-time asymptotic we proceed in two steps: a) determining λ0 and b)
determining the residue of ℘̃(s) at −λ0.

a) The first part is rooted in the idea of using the standard Newton iteration [3] for finding roots of non-linear
equations. We show here how one can transform it into an exact analytical method. For the present case, where −λ0
is the solution of the equation h(s) =

∑∞
k=0 h

(k)(x0)sk/k! = 0, which is closest to the origin, this can be uniquely
done.

Let the inverse of the function h(s) = z : C → C be h−1(z) = s (which can be multivalued in general) and let
h(s0) = 0 and h′(s0) 6= 0, with sr being a simple complex root closest to the origin. Moreover, we assume that 0 is a
regular point of h(s) (this is warranted by the assumptions of the preceding section). Expanding h−1(z) in a Taylor
series in the vicinity of 0 we obtain

sr =
∂h−1(0)

∂z
[z(sr)− z(0)] +

1

2!

∂2h−1(0)

∂z2
[z(sr)− z(0)]2 +

1

2!

∂3h−1(0)

∂z3
[z(sr)− z(0)]3 + . . . . (S3)

Notice that by definition z(sr) = 0 and z(0) = h(0) and ∂h−1(0)
∂z ≡

(
∂z

∂h−1(0)

)−1
and moreover also ∂z

∂h−1(0) = ∂h
∂s |s=0 ≡

h(1)(0). Therefore, the first order approximation to sr is

s1 ≈ −
h(0)

h(1)(0)
. (S4)
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Plugging this back into Eq. (S3) we have for the second order approximation

s2 = − h(0)

h(1)(0)
+
∂h−1(0)

∂z
[z(sr)− z(s1)] + . . . . (S5)

Using as before z(sr) = 0 and expanding z(s1) = h(s1) around 0 in powers of h(0)
h(1)(0)

we find

z(s1) ≡ h
(
− h(0)

h(1)(0)

)
= h(0)− h(1)(0)

h(0)

h(1)(0)
+
h(2)(0)

2!

(
h(0)

h(1)(0)

)2

. . . . (S6)

Omitting terms of order higher than 2, plugging Eq. (S6) into Eq. (S5) and proceeding as before we obtain the
second-order approximation to sr

s2 ≈ s1 −
h(0)2

2!

h(2)(0)

[h(1)(0)]3
(S7)

Going over to the third order approximation

s3 = − h(0)

h(1)(0)
− h(0)2

2!

h(2)(0)

[h(1)(0)]3
+
∂h−1(0)

∂z
[z(sr)− z(s2)] + . . . , (S8)

expanding as before in Eq. (S6) and repeating the steps with disregard to orders higher than 3 in Eqs. (S8) and (S6),
we obtain the third-order approximation to sr

s3 ≈ s2 −
h(0)3

3!

(
3

[h(2)(0)]2

[h(1)(0)]5
− h(3)(0)

[h(1)(0)]4

)
(S9)

The same steps can be repeated further, giving e.g. for the fourth-order approximation

s4 ≈ s3 −
h(0)4

4!

(
15

[h(2)(0)]3

[h(1)(0)]7
− h(2)(0)h(3)(0)

[h(1)(0)]6
+ 10

h(4)(0)

[h(1)(0)]5

)
(S10)

and so forth. Up to here we were essentially only step-wise improving the approximations in an iterative fashion
exactly as in the Newton’s iteration. However, continuing in this manner to fifth order and higher we find, by closer

inspection, that apart from the prefactors h(0)n

(n−1)!h(1)(0)2n−1 , Eqs. (S7)-(S10) are a result of a (n− 1)× (n− 1) almost

triangular determinant of the form

detAn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h(2)

2!
2h(3)

3!
3h(4)

4! · · · (n−1)h(n)

n!
nh(n+1)

(n+1)!

h(1)

1!
(n+2)h(2)

2!
(2n+3)h(3)

3! · · · [(n+1)(n−2)+1]h(n−1)

(n−1)!
[(n+1)(n−1)+1]h(n)

n!

0 2h(1)

1!
(n+3)h(2)

2! · [(n+1)(n−3)+2]h(n−2)

(n−2)!
[(n+1)(n−2)+2]h(n−1)

(n−1)!

0 0 3h(1)

1! · · · [(n+1)(n−4)+3]h(n−3)

(n−3)!
[(n+1)(n−3)+2]h(n−2)

(n−2)!
...

...
. . .

...
...

...
...

...
... (n−2)h(1)

1!
[2(n+1)−3]h(2)

2!
[3(n+1)−3]h(3)

3!

0 0 . . . 0 (n−1)h(1)

1!
2nh(2)

2!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (S11)

Explicitly, the i, j element of the square matrix An is

An(i, j) =
h(i−j+2)θ(i− j + 1)

(i− j + 2)!
(n[i− j + 1]θ(j − 2) + iθ(1− j) + j − 1), (S12)

where θ(x) denotes the Heaviside step function. One can henceforth prove by induction that the n-th order correction
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cn = sn − sn−1 is given by

cn =
[h(0)]n

[h(1)]2n−1
detAn

(n− 1)!
(S13)

with the symbolic convention detA1 ≡ 1. Therefore, −λ0, the exact root of h(s), which is closest to the origin, is
given by sr =

∑∞
k=1 ck. This completes the proof of Eq. (2) in the main text�

b) The FPT long-time asymptotics are obtained using Cauchy’s theorem

℘(t) ∼ lim
s→−λ0

[
(s+ λ0)℘̃(s)est

]
, (S14)

where the contour used to evaluate the residue is chosen to enclose −λ0 such that <(s) < λ0. To do so, we need to
find the leading order term of a (formal) partial fraction expansion of ℘̃(s). We rewrite the moment expansion in
Eq. (S1) as a limit of nth order Taylor polynomial Pn(s) with n→∞

℘̃(s) = lim
n→∞

(
n∑
k=0

(−s)k

k!
〈T k〉+Rn+1

)
, (S15)

with Taylor’s remainder theorem assuring the convergence of limn→∞Rn+1 = 0. Next we use the relation inverse to
the one leading from Eq. (S1) to Eq. (S2) to obtain after some rearrangements

℘̃(s) = lim
n→∞

∑n
k=0 g

(k)(x0)sk/k!∑n
k=0 h

(k)(xa)sk/k!
= lim
n→∞

 g(n)

h(n)
+

∑n−1
k=0

[
g(k) − g(n)

h(n)h
(k)
]
sk/k!∑n

k=0 h
(k)sk/k!

 , (S16)

where we omitted the explicit dependence on xa and x0 and formally carried out a long division in the second step,
using the fact that all g(n)/n!, h(n)/n! are finite and well behaved. As by the assumptions of S1 the first term on the
right of Eq. (S16) converges as n → ∞, and so does the left side of Eq. (S16), then by necessity the second term on
the right of Eq. (S16) converges as well. To isolate the first term of the partial fraction expansion of the second term
in Eq. (S16) we carry out a second long division. Introducing the shorthand notation bk = h(k)(xa)/k! leads to

n∑
k=0

bks
k = (s+ λ0)

n∑
k=1

cn−ks
k +

n∑
k=0

bk(−λ0)k, (S17)

where cn−k ≡
∑k
l=1 bn−k+l(−λ0)l−1, limn→∞

∑n
k=0 bk(−λ0)k = 0 and we omitted the details of the calculation as

they are tedious but straightforward. As a result we can write

℘̃(s) = lim
n→∞

 g(n)

h(n)
+

∑n−1
k=0

[
g(k) − g(n)

h(n)h
(k)
]
sk/k!

(s+ λ0)
∑n
k=1 cn−ks

n−k

[
1 +

∑n
k=0 bk(−λ0)k

(s+ λ0)
∑n
k=1 cn−ks

n−k

]−1 , (S18)

where for now we still have s 6= −λ0 (the limit s → −λ0 in Eq. (S14) is taken at the end). Noticing that∑n
k=1 cn−ks

n−k 6= 0 for any large n (since −λ0 is a simple pole of ℘̃(s); see also previous section) as well as the fact
that for any large n we have

∑n
k=0 bk(−λ0)k � 1 (in fact one can check by explicit computation that |

∑n
k=0 bk(−λ0)k|

with λ0 in Eq. (2) in the main text, uniformly converges to 0 with increasing n) we can Taylor expand the term[
1 +

∑n
k=0 bk(−λ0)k

(s+ λ0)
∑n
k=1 cn−ks

n−k

]−1
=

∞∑
l=0

(
−

∑n
k=0 bk(−λ0)k

(s+ λ0)
∑n
k=1 cn−ks

k

)l
≡ Tn (S19)

and limn→∞ Tn = 1. Moreover, it is easy to show that∑n−1
k=0

[
g(k) − g(n)

h(n)h
(k)
]
sk/k!

(s+ λ0)
∑n
k=1 cn−ks

k
=

F (s)

s+ λ0
+

Gn−2(s)∑n−1
p=0 cps

p
(S20)

with Gn−2(s) being some n− 2 degree polynomial in s and

F (s) =

∑n−1
k=0

[
g(k) − g(n)

h(n)h
(k)
]
sk/k!∑n−1

k=0

∑n−k
l=1 bk+l(−λ0)k+l−1

. (S21)
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FIG. S1: Schematic of the FPT problem in hyperspherically symmetric media with a reflecting confining boundary at R and
a centered perfectly absorbing target with a radius ra (red sphere).

Using this in Eq. (S18) we obtain

lim
n→∞

(
g(n)

h(n)
+
F (s)Tn
s+ λ0

+
Gn−2(s)Tn∑n−1

p=0 cps
p

)
. (S22)

Since Tn converges absolutely to 1 as n→∞ (as by definition −λ0 is a root of
∑n
k=0 bks

k), then by Mertens’ theorem
[2] we find that

lim
n→∞

F (s)Tn
s+ λ0

=
limn→∞ F (s)

s+ λ0
and lim

n→∞

Gn−2(s)Tn∑n−1
p=0 cps

p
= lim
n→∞

Gn−2(s)∑n−1
p=0 cps

p
<∞. (S23)

As we also have limn→∞
g(n)

h(n) < ∞ we can now compute the limit in Eq. (S14) by using Eq. (S23) in Eq. (S22) to
obtain the final result in Eq. (6) in the main text�

The above approach should in fact hold for all FPT densities decaying exponentially for long times as it

rests only on one additional assumption, namely that limn→∞
g(n)

h(n) <∞, which appears to be a necessary consequence
of the positivity and finiteness of moments of a probability density with strictly positive support. The proof of this
conjecture is, however, beyond the scope of the present work.

ANALYTICAL SOLUTIONS FOR ℘̃(s) FOR SPECIFIC CASES

In the analysis of FPT statistics of diffusion in fractal media and diffusion under the influence of a radial bias we
consider hyperspherically symmetric systems as depicted in Fig. S1.

S3. Mean field model of diffusion in fractal media

The FPT problem for diffusion in fractal media is described on the mean field level with the operator L̂dwdf =

Ddwr
1−df∂r(r

1+df−dw∂r) [4] under zero-flux boundary conditions at r = R and perfectly absorbing boundary condi-
tions at r = ra. The exact Laplace transform of the FPT density starting from a dimensionless radius x0 for diffusion
in fractal media (see main text for definition of the dimensionless units) can be shown to be given by

℘̃(s) =

(
x0
xa

)ν Dν,−(x̂0
√
s,
√
s)

Dν,−(x̂a
√
s,
√
s)

(S24)
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with − 1
2 ≤ ν = 3

2 −
df+1
dw

< 3
2 , and where we introduced the auxiliary function

Dν,±(x, y) = Iν(x)Kν±1(y) +Kν(x)Iν±1(y), (S25)

and where Iν(x) and Kν(x) denote the modified Bessel function of the first and second kind, respectively. Using the
series expansions for Iν(x) and Kν(x) in [5] one can show that the coefficients h(n), g(n) (note that these only differ
in the positional variable x0 versus xa) for ν 6= 0 are given as

g(n) =
n!π

4n sin(πν)

(
n∑
l=0

x2l0
l!(n− l)!Γ(l + 1− ν)Γ(n− l + ν)

−
n−1∑
l=0

θ(n− 1)x
2(l+ν)
0

l!(n− 1− l)!Γ(l + 1 + ν)Γ(n− l + 1− ν)

)
, (S26)

or, written more compactly using the Gauss hypergeometric functions [5],

g(n) =
n!π

4n sin(πν)

(
2F1(−n, 1− n− ν, 1− ν;x20)

Γ(1 + n)Γ(1− ν)Γ(n+ ν)
− θ(n− 1)

x2ν0 2F1(1− n, ν − n, 1 + ν;x20)

Γ(n)Γ(1− ν + n)Γ(1 + ν)

)
. (S27)

h(n) is obtained from g(n) by making the substitution x0 → xa. In the particular case of ν = 1
2 this simplifies to

g(n) = n!(1−x0)
2n

(2n)! and for ν = − 1
2 we have g(n) =

n!(1−x0)
2n( 2n

x0
+1)

(2n+1)! . Using the asymptotic formulas of 2F1(a, b, c; z) for

|a|, |b| → ∞ in [5] one can show that limn→∞
g(n)

h(n) = 0, as required in section S2. For the sake of completeness we also
give the result for the special case ν = 0:

g(n) =
x2n0
4nn!

+

n−1∑
l=0

n!x
2(n−l−1)
0

4n−1l!(n− l − 1)!2(l + 1)!

(
− log(x0)− γ − ψ(l + 1) + ψ(l + 2)]

2
+

(n− l − 1)!2

(n− l)!2
[ψ(n− l + 1) + γ]

)
,

(S28)

where ψ(1) = −γ and ψ(k ≥ 2) =
∑k−1
i=1 k

−1 and γ ' 0.5772 denotes the Euler-Mascheroni constant [5].
The short-time asymptotic is derived using asymptotic formulas for the modified Bessel functions in [5]. We find

limx,y→∞Dν,±(x, y) ∼ cosh(y−x)√
xy , in turn leading to

℘̃(s) ∼
(
x0
xa

)ν−1/2
e−
√
s(x̂0−x̂a)

ˆL−1

−−−→ ℘(t) ∼
(
x0
xa

)ν−1/2
x̂0 − x̂a
2
√
πt3

e−(x̂0−x̂a)2/4t, (S29)

valid for t . x̂20, x̂
2
a.

On the intermediate time-scale we have 1 �
√
s � x̂−1a , x̂−10 such that Kν(

√
s) → 0 and we end up with ℘̃(s) ∼(

x0

xa

)ν
Kν(
√
sx̂0)

Kν(
√
sx̂a)

. With the power series expansions of Kν(z) for small z we find after some algebraic manipulations

℘̃(s) ∼
(
x0
xa

)2νθ(ν) 1− Γ(1− |ν|)
Γ(1 + |ν|)

[√
sx̂0
2

]2|ν|
1− Γ(1− |ν|)

Γ(1 + |ν|)

[√
sx̂a
2

]2|ν| (S30)

valid for [Γ(1 + |ν|)/|Γ(2 − |ν|)|]1/(1−|ν|)(x̂0/2)2 � t � 1. Expanding the denominator and truncating the resulting
series after the first correction to the leading order behavior we have

℘̃(s) ∼
(
x0
xa

)2νθ(ν)
(

1− Γ(1− |ν|)
Γ(1 + |ν|)

[(
x̂0
2

)2|ν|

−
(
x̂a
2

)2|ν|
]
s|ν| −

[
Γ(1− |ν|)
Γ(1 + |ν|)

]2 [(
x̂0x̂a

4

)2|ν|

−
(
x̂a
2

)4|ν|
]
s2|ν|

)
.

(S31)
Eq. (S31) is slowly varying and can be inverted with Feller’s version of a Tauberian theorem (Example c, pp. 447 in
[1]) to give the result presented in Eq. (10) in the main text. Using the Tauberian theorem for the special case ν = 0
we in turn obtain ℘(t) ∼ 2 log( x0

xa
)/[t(log(t)− 2 log(xa))2].

Moreover, it follows from Eq. (S26) that the first order correction term in Eq. (4) in the main text in the limit
xa → 0 becomes for ν < 0

lim
xa→0

h(2)(xa)

h(1)(xa)2
∼ x̂−2νa

−ν(1− ν)

2− ν
(S32)
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and

lim
xa→0

h(2)(xa)

h(1)(xa)2
∼ 1

2 log(x̂a)2
(S33)

for ν = 0. The vanishing of the correction terms gives rise to Poisson-like long-time asymptotics in Eqs. (11) and (12).

S4. Taylor dispersion

Taylor dispersion is described by the advection-diffusion operator L̂T = −v∂r + D∂2r with absorbing boundary
conditions at r = 0 and reflecting boundary conditions at r = R. Here the exact Laplace transform of the FPT
density to the origin if starting from x0 for diffusion in a linear potential reads

℘̃(s) = e−Pex0

√
Pe2 + s cosh

[√
Pe2 + s(1− x0)

]
− Pe sinh

[√
Pe2 + s(1− x0)

]
√

Pe2 + s cosh
[√

Pe2 + s
]
− Pe sinh

[√
Pe2 + s

] , (S34)

where Pe is defined in the main text. Using a power series expansion for the hyperbolic functions as well as the
binomial theorem (1 + x)k =

∑k
i=0

(
k
i

)
xk−1 we find upon some manipulations and using the series expansion for the

modified Bessel function of the first kind Iν(y) the exact result

g(n)(z) =
√
πePezPe−2n

(z
2

)n+1/2 [
In−1/2(z)− sgn(Pe)In+1/2(z)

]
(S35)

with z = (1−x) and h(n) = g(n)(1). Using the asymptotic formulas for Iν→∞(z) in [5] one can show that limn→∞
g(n)

h(n) =
0, as required in section S2.

The short- and intermediate-time scale behavior is derived from Eq. (S34) by taking the limit (Pe2 + s)→∞ and
using the first shifting theorem for Laplace transforms

℘̃(s) ∼ e−Pex0e−
√

Pe2+sx0 ,
ˆL−1

−−−→ ℘(t) ∼ Φ(t;x0)e−Pex0−Pe2t (S36)

thereby leading directly to Eq. (13) in the main text.
In the limit Pe → ∞ (strong bias away from the target) we find using Eq. (S35) that the first correction term to

λ0 in Eq. (4) in the main text vanishes exponentially,

lim
Pe→∞

h(2)

h(1)2
∼ 4e−2PePe, (S37)

thus giving rise to Poisson-like long-time asymptotics.

S5. Radially biased diffusion in 2d

Radially biased 2D diffusion is described by the operator L̂2D = D∂2r + (D − v0)r−1∂r [6]. The exact Laplace
transform of the FPT density starting from a dimensionless radius x0 to a centered target with radius xa for 2d
diffusion under the influence of a radial bias is given by [6]

℘̃(s) =

(
x0
xa

)−µ Dµ,+(x0
√
s,
√
s)

Dµ,+(xa
√
s,
√
s)

(S38)

with µ = Pe/2 and Dµ,+ defined in Eq. (S25). Using the series expansion of the respective modified Bessel functions
[5] the coefficients entering Eqs. (1) to (6) in the main text read

g(n) =
−n!πxµ

4n sin(πµ)

(
n∑
l=0

x
2(n−l)
0

l!(n− l)!Γ(l − µ)Γ(n− l + 1 + µ)
−
n−1∑
l=0

θ(n− 1)x
2(n−1−l−µ)
0

l!(n− 1− l)!Γ(l + 2 + µ)Γ(n− l − µ)

)
(S39)
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and h(n) is obtained as before by the substitution x0 → xa. Eq. (S39) can be written more compactly using the Gauss
hypergeometric functions [5]:

g(n) =
−n!πxµx2n0
4n sin(πµ)

(
2F1(−n,−n+ µ,−µ;x−20 )

Γ(1 + n)Γ(1 + n− µ)Γ(−µ)
− θ(n− 1)

x
−2(1+ν)
0 2F1(1− n, 1− n+ µ, 2− µ;x−20 )

Γ(n)Γ(2− µ)Γ(n− µ)

)
. (S40)

Using the asymptotic formulas of 2F1(a, b, c; z) for |a|, |b| → ∞ in [5] one can show that limn→∞
g(n)

h(n) = 0, as required
in section S2.

It can be shown that the short- and intermediate-time asymptotics are equivalent to those found in Eqs. (S29)
and (S30) but with the substitution ν = −µ. Similarly, the correction term in Eq. (4) in the main text in the limit
Pe→∞ (strong outward bias) vanishes

lim
xa→0

h(2)(xa)

h(1)(xa)2
∼ Pe

2
xPea , (S41)

giving rise to Poisson-like long-time asymptotics.

S6. Ornstein-Uhlenbeck process

The overdamped escape from a harmonic potential involves the Ornstein-Uhlenbeck operator L̂OU =
(mκ)−1(∂rU(r) + kBT∂

2
r ) [7] with absorbing BCs at a and natural BCs at −∞. The exact Laplace transform of

the FPT density starting from a dimensionless x0 over a barrier at xa (xa > x0) for an overdamped particle in
harmonic confinement is given by [7]

℘̃(s) = e(x
2
0−x

2
a)/4

D−s(−x0)

D−s(−xa)
≡ H−s(−x0/

√
2)

H−s(−xa/
√

2)
, (S42)

in terms of Weber and generalized Hermite functions, respectively [5]. For the OU process the coefficients h(k), g(k)

are given in terms of Hn,0
0 (x) ≡ (−1)n ∂n

∂αnHα(− x√
2
)|α=0, which are readily implemented in the Mathematica software.

One can confirm numerically that g(n)

h(n) converges rapidly to 0 with increasing n. While it is possible to prove this
analytically as well, this task will be reserved for a separate longer publication.

The short- and intermediate-time scale asymptotics are obtained from the expansion of D−s(−x0) for s� x20,a [5]
leading to

℘̃(s) ∼ e(x
2
0−x

2
a)/4e−

√
s(xa−x0)

1 +
|x0|3

24
s− x20

16
s2

1 +
x3a
24
s− x2a

16
s2

. (S43)

The inversion of both factors in Eq. (S43) leads to the convolution Eq. (15) in the main text.

As for the long-time limit it is in fact sufficient to inspect the term h(2)(xa)
h(1)(xa)2

. Using the exact result for H1,0
0 in the

main text one can show [5] that we have (note that the argument in Hn,0
0 is actually negative)

lim
|x|→∞

H1,0
0 (x) ∼

√
2πex

2/2
(
|x|−1 − x−1

)
+ log(|x|). (S44)

Moreover, using the formulas in [5] we also have that

lim
|z|→∞

H−s(z) ∼ −
√
π

ez
2

z−s

zΓ(s)
eiπs Arg(z) ≥ π

2
(S45)

(note that in our case z is real and negative) to obtain after taking the second derivative

lim
|x|→∞

H2,0
0 (x) ∼ 2

√
2π
γex

2/2

x
, (S46)
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such that

lim
xa→∞

h(2)(xa)

h(1)(xa)2
∼ 16xγe−x

2
a/2
√

2/π, (S47)

giving rise to Poisson-like long-time asymptotics in the high barrier limit. Conversely, in the limit xa � −1 (x0 < xa)

we obtain using limz→∞D−s(z) ∼ e−z
2/4x−s [5] and taking x−s = e−s log(x) the deterministic limit

℘̃(s) ∼ e−s log(x0/xa)
ˆL−1

−−−→ ℘(t) ∼ δ(t− log [x0/xa]). (S48)

Equivalently we recover 〈T (x0)〉 ∼ log (x0/xa).
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