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Chapter 1

Introduction



Almost all processes in life are governed by proteins which are biomolecules

consisting of a chain of amino acids. They perform a wide range of functions

in organisms, including catalysis of metabolic reactions, transport of molecules,

transcription of DNA to RNA, and ensuring the structural stability of cells.

This function is intimately linked to a proteins’ three-dimensional structure

and its dynamics. For example, the biological function of most proteins includes

interactions with ligands or other macromolecules at specific sites of the protein.

Depending on how exposed these interaction sites are to the environment in a

given protein structure, interaction with ligands is more likely. Thus, changes in

the structure of a protein, or conformational changes, regulate these interactions.

Conversely, the binding of ligands to proteins can induce conformational changes

which transmit signals, for example, in hormone-receptor binding [1]. But, also

smaller structural fluctuations appear to contribute to protein function [1]. To

understand the functioning of proteins, it is, therefore, necessary to investigate

protein dynamics.

Protein dynamics is a complex process comprised of motions on multiple

orders of magnitude both in characteristic time-scale and amplitude. Bond

vibrations are the smallest and fastest motions and show an amplitude of 0.001−
0.01 nm on a characteristic time-scale of 10−14 s to 10−13 s whereas the largest

motions such as allosteric transitions show an amplitude of 0.1 − 0.5 nm on

characteristic time scales of 10−5 s to 1 s [2].

Functionally important motions are typically identified with the slowest mo-

tions of a protein as noise by the heat bath dominates bond vibrations [3]. Often

those functionally relevant motions involve processes on many (long) time scales.

For example, early flash-photolysis experiments of Frauenfelder et al. showed

that unbinding processes of carbon monoxide from myoglobin show a stretched

exponential in relaxation times [4] that can only occur if processes on multiple

time-scales are involved in the unbinding. A more recent study showed that

dynamics of proteins is non-equilibrium and self-similar over thirteen orders of

magnitude in time [5] [6]. Finding a comprehensive model that describes such

complex dynamics in detail is a very daunting task. Still, we can ask: What
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is the simplest model that is complex enough to reproduce observed features of

protein dynamics?

Frauenfelder [7] proposed that a hierarchical structured free-energy land-

scape governs the internal dynamics of proteins (see Fig. 2.2). In such hier-

archical free energy landscapes, states of a protein are structured into tiers.

The highest tier consists of ’taxonomic conformational states’ that are typically

associated with protein function. Transitions between these functional states

represent the large-scale rearrangements of proteins governed by high free en-

ergy barriers, leading to long transition times. Within each of these states,

smaller and faster motions between conformational substates are governed by

lower free-energy barriers. Each of these conformational substates contains fur-

ther substates separated by even lower free-energy barriers, where transitions

describe even faster motions with smaller amplitude. Relaxation processes in

this nested structure of conformational substates lead to stretched exponential

decays as a whole hierarchy of decay processes with different decay times are

involved.

Further, it has been shown analytically that diffusion in a simple hierar-

chical lattice model is anomalous, i.e., the variance of trajectories increases

with a power law in time instead of linearly as expected for Brownian mo-

tion [8] [9]. This model is a 1-dimensional lattice of states where static barriers

with exponentially distributed heights p(∆G) = 1/γexp(−∆G/γ) govern tran-

sitions between states. It has been shown that anomalous diffusion exponents

α = 1/(1 + γ) directly depend on γ, representing the ’ruggedness’ of the model

free-energy landscape. Higher-dimensional versions of this model that resemble

protein dynamics more closely could only be treated analytically in the limit of

infinite dimensions [10].

Indeed, anomalous diffusion behavior in the internal motions of proteins

was observed in equilibrium molecular dynamics (MD) simulations [11] of small

globular proteins [12] [13] and peptides [14]. Besides a hierarchically structured

free-energy landscape [13], other causes for the observed anomalous diffusion

behavior such as a fractal structure of protein configuration space [14] or a mere
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projection effect arising from the analysis of collective coordinates [15] have

been suggested. Assuming that the anomalous diffusion behavior arises from

the hierarchical structure of protein free-energy landscapes, it should be possible

to infer barrier height distributions based on anomalous diffusion exponents

obtained in MD simulations.

The main aim of this work is to investigate the hierarchical structure of pro-

tein free-energy landscapes. To that end, we use a d-dimensional generalization

of the simple hierarchical lattice model as a reference to translate anomalous

diffusion exponents obtained from MD simulations into ruggedness and dimen-

sionality estimates.

This thesis is structured in the following way.

Chapter 2: Estimating ruggedness and dimensionality from molecu-

lar dynamics simulations In this chapter, we present ruggedness and di-

mensionality estimates of 500 small globular proteins based on a d-dimensional

hierarchical lattice model. To that end, we determined how anomalous diffusion

exponents depend on ruggedness and dimensionality from random walk simula-

tions in models 15−20 kT per dimension and 40−60 dimensions. Assuming that

a similar relation holds for free-energy landscapes of proteins, we determined

the ruggedness and dimensionality of a set of 500 small globular proteins and

obtained typical ruggedness of 15− 20 kT per dimension and dimensionality of

40− 60 . Further, we found an interesting correlation between ruggedness and

dimensionality that likely originates from proteins adapting to their particular

function. This chapter is a self-contained manuskript that is currently under

review.

Chapter 3: A universal scaling relation between accessible configura-

tion space volume and escape rates in intermediate dimensional hier-

archical free-energy landscapes Here, we asked what the cause of anoma-

lous diffusion in the d-dimensional hierarchical lattice model is. Our random

walk simulations showed that trajectories, especially for high ruggedness, are
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trapped long times in a well-defined small region of state space. We found

that ruggedness, the parameter that determines the anomalous diffusion behav-

ior, as shown in chapter 1, affects both the escape times from these traps and

their topology. A universal scaling relation describes this combined influence of

the topology and escape rates. This result suggests that anomalous diffusion

in hierarchical free energy landscapes is at least partly caused by the fractal

structure of accessible configuration space. That means hierarchical free-energy

landscapes and fractal configuration space are not competing models but rather

’two sides of the same coin’.

Chapter 4: An efficient sampling algorithm to generate trajectories in

hierarchical free-energy landscapes To calculate random walk trajectories

with sufficient sampling in higher dimensional models ruggedness, we needed

to develop an enhanced sampling method, as trajectories are trapped in small

regions of state space as described in chapter 2. We show that this method yields

similar results to brute force sampling on average (over disorder), whereas it is

orders of magnitude faster. This method also provides an interesting prospect

towards an analytical solution as it is exact in the regime of high-ruggedness

values and can be exploited in a renormalization group approach.
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Chapter 2

Estimating ruggedness of

free-energy landscapes of small

globular proteins from principal

component analysis of molecular

dynamics trajectories



2.1 Introduction

Most processes in life are governed by proteins, macromolecules consisting of

a chain of amino acids. Their biophysical function in living cells is intimately

linked to their structure and, in particular, to their remarkably complex internal

dynamics on time scales ranging from picoseconds to hours. These thermally

activated internal motions are governed by a diffusion process on a free-energy

landscape [16]. Moessbauer spectroscopy and neutron scattering experiments

showed that protein free-energy landscapes with conformational coordinates as

its arguments [17] are characterized by a large number of nearly isoenergetic

minima. Free energy barriers between these minima are structured hierarchi-

cally, as shown by flash-photolysis experiments on myoglobin [4] (see Fig. 2.2).

Recent progress in methods and performance of computational hardware [18] [19]

allows generating molecular dynamics (MD) trajectories ranging over multiple

orders of magnitude in simulation length up to multiple microseconds as a stan-

dard routine. This development allows studying the hierarchical structure of

protein free-energy landscapes in silico [20]. However, due to the large number

of possible protein configurations, available MD trajectories are still not long

enough to reach thermal equilibrium, which constitutes the well-known sam-

pling problem of MD simulations. Slowest relaxation times that correspond to

folding/unfolding times are on the time scale of minutes or even hours, which

is still beyond what MD simulations are capable of simulating on a reasonable

computing time scale.

To circumvent this problem, we use non-equilibrium methods that, rather

than finding a model for a protein’s equilibrium dynamics, model its dynam-

ics as a diffusion process within its free-energy landscape. Diffusion processes

in hierarchical free-energy landscapes models were explored for simple one-

dimensional [8] as well as several many-dimensional models [9][21]. It has been

shown that diffusion in such models is anomalous, i.e., the variance of trajecto-

ries increases with a power law in time [8][10]. In particular, it was analytically
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shown how exponents depend on the barrier-height distribution [8]. Similarly,

anomalous diffusion behavior would be expected for hierarchical protein free-

energy landscapes and was indeed observed in MD simulations of small pep-

tides [14] and small globular proteins [13] (see Fig. 2.1). Assuming that the

observed anomalous diffusion behavior arises from the hierarchical structure of

protein free-energy landscapes, it should be possible to estimate barrier height

distributions from anomalous diffusion exponents obtained from MD trajecto-

ries.

In this work, we estimated barrier height distributions of 500 small globular

proteins selected to cover known folds and functions from anomalous diffusion

exponents observed in MD simulations. To this end, we generated for each of

these proteins 1µs molecular dynamics trajectories and carried out trajectory-

length dependent principal component analysis [13] for the selected proteins.

To translate the observed anomalous diffusion exponents into barrier height

distributions, we used a d-dimensional hierarchical model. This model consists

of a lattice of states: transition rates between adjacent states are governed by

static free-energy barriers ∆G, which are randomly distributed according to

p(∆G) = 1
γ e
−∆G/γ , where γ quantifies the ’ruggedness’ of the hierarchical free-

energy landscape. The relation between anomalous diffusion exponents and γ is

analytically known only for 1-d models and, in a mean-field approximation, for

high dimensions d → ∞ [10]. However, because the essential configurational

subspace of proteins is assumed to be ∼ 10 < d <∼ 100) [22], we had to

resort to a numerical approach by simulating random walks in models with

3 − 200 dimensions. Indeed, we observed large deviations from the mean-field

approximation. By cross-validation, we showed that, based on this numerically

obtained relation, barrier height distributions can be estimated with an accuracy

of ∼ 5 kT.

Applying the same approach to 1µs MD trajectories, we determined γ for

protein free-energy landscapes. We found that most ruggedness coefficients of

the proteins fall within γ ≈ 15− 20 kT/d with an estimated essential subspace

dimensionality d ≈ 40− 60. This result provides evidence that the dynamics of
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a broad range of protein folds is governed by similar barrier height distributions.

Figure 2.1: Variance of molecular dynamics trajectories along collective coordi-

nates shows a power law like scaling behavior in dependence of trajectory length.

The figure shows the variance of a 5µs molecular dynamics trajectory of adeny-

late kinase from Escherichia coli (PDB code: 1AKE) along orthogonal collective

coordinates, i.e., principal components (PC) in dependence of trajectory length

T . These collective coordinates are (PCA) eigenvectors of the covariance ma-

trix of the trajectory and are typically ordered according to the magnitude of

their corresponding (PCA) eigenvalues λi, which represent the variance of the

trajectory along the eigenvector. PCA eigenvalues λi of MD trajectories ap-

proximately increase with a power law depending on trajectory length T . The

scaling exponents αi (slopes in a log-log plot) of these power laws show subdif-

fusive behavior as αi < 1.
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Figure 2.2: Hierarchical structure of protein free-energy landscapes proposed by

Frauenfelder [4]. (Top) On a large scale, the folding funnel dominates free-

energy landscapes of globular proteins [16]. Within this folding, on a smaller

scale, functionally important states are found. Each of these contains a hier-

archy of conformational substates, where hierarchy tiers i are characterized by

mean barrier heights 〈∆Gi〉. Due to the multitude of different isoenergetic con-

formational substates, the free energy landscape of proteins on this scale is best

described in statistical terms, i.e., in terms of barrier distributions. [23]

2.2 Theory

To explain non-exponential kinetics, e.g., ligand binding experiments [4], Frauen-

felder proposed early on that, in the folded state (Fig. 2.2, top), the underly-

ing intramolecular protein dynamics is governed by a hierarchical (free) energy

landscape [4] (Fig. 2.2 bottom and magnification). Accordingly, the kinetics
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Figure 2.3: (A) Sketch of a 1-d hierarchical model free energy landscape, which

is characterized by a lattice of free energy minima with equal free energy sepa-

rated by barriers with random heights distributed according to an exponential

distribution. With increasing length scales, highest barrier heights increase on

average with a characteristic height γ. (B) Sketch of a d-dimensional generaliza-

tion procedure of a 1-dimensional hierarchical model. Whereas the exponential

barrier height distribution is kept, the 1-dimensional lattice is generalized to

d-dimensional lattices (2-d and 3-d cases are shown).

of larger, typically functional protein motions are governed by higher free en-

ergy barriers located at correspondingly larger distances in configurational space

(top sketch in the box of Fig. 2.2). These barriers separate ‘taxonomic confor-

mational states’. Within each of these functional states, increasingly smaller

and faster motions between ‘statistical substates’ [23] are described by more

frequent crossings of increasingly lower barriers separated by correspondingly

smaller distances (lower sketches in the box of Fig. 2.2). Overall, the protein
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free energy landscape is thus described by a hierarchy of energy barriers with

characteristic barrier heights and separations at each tier. Precisely how the

barrier height increases with increasing mutual distance between the barriers is

described by the ruggedness γ. Hence, γ determines the subdiffusive dynamics

of the protein over many orders of magnitude [8].

2.2.1 Simple hierarchical model free energy landscape

To relate this subdiffusive behavior to ruggedness γ , we used a d-dimensional

lattice model inspired by the subdiffusive behavior of the simple 1-dimensional

model [8]. The near power law type behavior of essential degrees of freedom of

many proteins, as illustrated in Fig. 2.1, suggests using a hierarchy of barriers,

the heights γ of which are distributed exponentially,

p(∆G) =
1

γ
e−

∆G/γ . (2.1)

In this model, shown in Fig 2.3 A, the ruggedness γ describes how the height

of the barriers ∆G increases with increasing average distance ∆x between these

barriers. Specifically, for a distance increase by a factor of two, the barrier

heights increase by γ/ log(2).

Generalizations to d-dimensions have been suggested, which may be consid-

ered as a model for the high-dimensional protein free-energy landscape, such as

in [9]. Here, we rather choose the model proposed in [21] because we expect it

to give more isotropic diffusion than the other. This hierarchical lattice model

is a d-dimensional cubic lattice where exponentially distributed barriers heights

(see Fig. 2.3) govern transitions between states.

It has been shown that this model exhibits anomalous diffusion both for

1-dimensional and in the limit of high-dimensional models [10].

For the former, the subdiffusion exponent α is

α =
2

1 + γ
. (2.2)
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For high dimensions d, a mean-field approximation [10] yields

α =
2 d

γ
. (2.3)

This approximation assumes that a random walk trajectory never visits any

state twice, which is strictly only fulfilled for d → ∞ and is equivalent [10]

to continuous time random walks (CTRW) [24]. Because protein dynamics is

well described by typically tens or hundreds of collective coordinates [25], we

assumed that neither approximation is sufficiently accurate in this intermediate

range and therefore resorted to studying this model numerically.

2.2.2 Determining anomalous diffusion exponents from MD

trajectories

To this end, we followed common practice in protein dynamics simulations

and calculated anomalous diffusion exponents from trajectory length dependent

PCA [13] [14]. This approach differs from traditional analyses of subdiffusion

in statistical free energy landscapes in that anomalous diffusion exponents are

determined from the trajectory length dependence of the eigenvalues of the

time-averaged covariance matrix,

Cij(T ) =
1

T

〈∫ T

0

dt (xi(t)− µi) · (xj(t)− µj)

〉
ens

, (2.4)

rather than time dependence of the ensemble-averaged covariance matrix

Cij(t) = 〈(xi(t)− µi) · (xj(t)− µj)〉ens . (2.5)

In the above two equations 2.4 and 2.5, xi denotes the 3N Cartesian coordinates

of N selected atoms of a protein and µi =
∫ T

0
dtxi(t) as well as µi = 〈xi(t)〉ens

their corresponding means. Note that C is by construction a non-negative

symmetric matrix and is therefore diagonalizable. Its non-negative eigenvalues

(”PCA eigenvalues”) λi represent the variance of a trajectory along correspond-

ing eigenvectors vi (”PCA eigenvectors”), which represent collective motions.

If λi follows a power law

λi(T ) ∝ Tαi , (2.6)
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we define anomalous diffusion exponents as αi. For Brownian motion in the limit

of high-dimensional spaces, it has been shown that this definition is equivalent to

the conventional one derived from equation 2.5 [26]. In supplement I, we show

that this equivalence also holds for anomalous diffusion in high-dimensional

hierarchical lattice models.

2.3 Methods

2.3.1 Trajectory length dependent principal component

analysis (tPCA)

Anomalous diffusion exponents αi were determined in a similar way from both

MD trajectories and random walk trajectories in hierarchical model free energy

landscapes. To estimate αi via equations 2.4 and 2.6, each trajectory of length

T0 was split into 100 windows [nT0] of length T . On each of these windows,

PCA was performed and the resulting set of PCA eigenvalues was averaged.

10 different time window lengths T were chosen, distributed exponentially from

100 ps to 300 ns, such that the overlap of consecutive windows was below 10% to

maximize information content. For these data, anomalous diffusion exponents

αi were estimated from the slopes of linear least-squares fits to the logarithm of

window length T and PCA eigenvalues λi.

2.3.2 Random walk generation

We generated 40,000 random walks, each in a separately generated hierarchical

free energy landscape. Random walks were generated using the Gilliespie algo-

rithm [27] with parameter ranges summarized in Table 2.1. Due to the high di-

mensionality of the energy landscapes, sections of these were generated dynam-

ically on demand. To this end, for each visited state, adjacent barriers to previ-

ously visited states were recovered from memory, whereas new adjacent barriers

were chosen randomly from the exponential distribution p(∆G) = 1
γ e
−∆G/γ and

stored (equation 2.1 and Fig. 2.2). The next barrier crossing was chosen as
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described in the Gillespie algorithm [27] and the time was advanced accord-

ingly. The temperature was set to 1 such that barrier heights and ruggedness

γ is given in units of kT in the following. For intermediate dimensional models

(d > 10) with high ruggedness (γ/d > 20 kT), an enhanced sampling algorithm

(see chapter 4) was used to generate random walk trajectories that were long

enough to sample a sufficiently large PCA subspace.

T0 105..12 [trajectory length]

d 3..200

γ/d 3..30 [kT]

Table 2.1: Parameter range of random walk simulations of the hierarchical free-

energy landscape model

2.3.3 Estimation of the dependence of anomalous diffusion

exponents on ruggedness

To determine which functional form f describes best how the obtained anoma-

lous diffusion exponents αi decrease with ruggedness γ, we considered the ex-

ponential αf=1,β1,β2(γ/d) = β1 exp(−(γ/d)/β2), power law αf=2,β1,β2(γ/d) =

β1 /(γ/d)β2and linear αf=3,β1,β2(γ/d) = β1 γ/d + β2 dependence. Further,

the data suggested normalizing the ruggedness by dimension d. To calculate

the posterior probability P (f, β1, β2|{αi}) for each of these functional forms f ,

given the obtained {αi}, a Bayesian approach was used

P (f, β1, β2|{αi}) ∝ P ({αi}|f, β1, β2)P (f, β1, β2).

Here, the likelihood P ({αi}|f, β1, β2) of observing a set of scaling exponents at

a given ruggedness value was described by a Gaussian distribution

P ({αi}|f, β1, β2) ∝ exp

−∑
γ/d

∑
i

(
αi − αf,β1,β2(γ/d)

)2
σ2(γ/d)

 , (2.7)

and αf,β1,β2(γ/d) was chosen as a linear, exponential or power law function as

described above. A constant prior P (f, β1, β2) was assumed for each param-
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eter of the likelihood function. The variance σ2(γ/d) of the Gaussian prob-

ability distributions was approximated by σ2(γ/d) = a · γ/d + b. To deter-

mine the two parameters a and b, we generated 1,000 trajectories each for

γ/d ∈ 5 kT, 15 kT, 17 kT, 20 kT, respectively, and calculated the respective vari-

ances. To these, the above linear function was fitted. Posterior probabilities

for the function and their two parameters were determined using Gibbs sam-

pling [28] with 100,000 steps.

2.3.4 Ruggedness and dimensionality estimates

To estimate ruggedness and dimensionality for given αi, in the absence of an

analytical expression, the likelihood of observing anomalous diffusion exponents

in random walk trajectories that were generated in models with given rugged-

ness and dimensionality was estimated. To that end, a joint kernel density

was estimated from ruggedness γ and dimensionality d parameters as well as n

PCA eigenvalue anomalous diffusion exponents αi a (n + 2)-dimensional using

a kernel density estimator [29] (see Fig. 2.4). Given a set of n PCA scaling

exponents {αi}, a likelihood p(γ/d, d|{αi}) was calculated from the joint kernel

density. The number n of PCA eigenvalues that are sufficiently large (> 10−5)

depends on the length of a random walk/trajectory. Due to the limited amount

of sampling in random walks, n = 6 PCA eigenvalues were sufficiently large to

determine anomalous diffusion exponents in all of the generated random walk

trajectories and were used for the kernel density estimation. For a set of anoma-

lous diffusion exponents obtained both from random walks as well as from MD

trajectories, the most likely ruggedness and dimensionality values as an estimate

were used.

2.3.5 Protein selection

The 500 proteins were selected using the protocol found in [30]. In this protocol,

nonhomologous proteins were selected from the protein data bank (PDB) [31]

such that a large range of small globular proteins with less than 90% sequence
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γ/d

{α i
}

p(
γ
/d
, {
α
i})

Random walk simulation data

Figure 2.4: Dimension reduced sketch of the probability density of observing

a set of anomalous diffusion exponents {αi} for a given ruggedness γ/d and

dimensionality d. To estimate this probability density, random walk trajectories

in 3 to 200 dimensions and ruggedness values of 3 to 30kT were generated and

anomalous diffusion exponents αi were determined. A Gaussian kernel density

estimator to obtain a probability density from the simulation results.

identity was retrieved. Monomeric structures without gaps consisting of only

standard residues were used. From the remaining protein structures, those

containing polymeric or non-constitutive ligands were excluded. The selected

pdb codes can be found in the supplement 2.6.2 and 100 ofthe selected structures

in supplement 2.6.3.

Among the 500 selected proteins, 100 enzymes and non-enzymes were se-

lected to perform three additional 1µs MD-simulations.
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2.3.6 Generation of MD trajectories

For each of the 500 selected proteins, MD simulations were performed using

the simulation package software GROMACS 2018 [32]. Starting structures

were obtained as described above in section 2.3.5. Solvent (TIP4P-Ew water

model [33]) and ions (Na+ and Cl−) were added, establishing a salt concentra-

tion of 0.15 mol l−1 and neutralizing the overall system charge. A triclinic box

with periodic boundary conditions was used with a 1.5 nm distance between so-

lute and box boundary. Prior to each simulation run, energy minimization was

performed using the GROMACS steepest descent algorithm until convergence

was reached. This energy minimization was followed by a 1 ns (NPT) MD sim-

ulation to equilibrate the system. After energy minimization and equilibration

a 1µs MD trajectory was generated for each protein using Amber99*ildn force

field [34] with a 2.5 fs time step with virtual sites [35]. All bond lengths were

constrained, using the Settle algorithm [36] for the solvent and Lincs algorithm

[37] for the solute, with a Lincs order of 4 during energy minimization and equi-

libration and 6 in the production run. Van-der-Waals forces were ignored for

distances > 1 nm and Coulomb forces were calculated using the particle mesh

Ewald method [38] with a real-space cutoff of 1 nm, PME order of four and a

Fourier grid spacing of 1.2 �A.

For 200 of the selected proteins comprising 100 enzymes and 100 non-enzymes,

three additional microsecond trajectories were calculated following the same pro-

tocol to estimate the statistical uncertainty of the determined ruggedness and

dimensionality.
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Figure 2.5: (A) Dependence of the scaling exponent of the largest PCA eigen-

value α0 on ruggedness γ/d and dimensionality d. The color of each point

represents an average scaling exponent averaged over all simulations with corre-

sponding ruggedness and dimensionality values. (B) Dependence of anomalous

diffusion exponents on ruggedness γ for different ratios of γ/d

2.4 Results and Discussion

2.4.1 Anomalous diffusion in intermediate dimensional hi-

erarchical models

Using random walk trajectories, generated as described in section 2.3.2, we

first determined how anomalous diffusion exponents depend on the ruggedness

and dimensionality of the hierarchical lattice model shown in Fig. 2.5. Almost

normal diffusion (α = 1) is seen for small ruggedness parameters γ, with in-

creasingly strong subdiffusion (α < 0.1) for larger γ as shown in Fig. 2.5 A.

Notably, similar α are seen for regions of similar γ/d ratios as shown in Fig. 2.5

B.

For an explanation of this behavior, note that a trajectory is dominated by

crossings of the lowest barriers ∆Gmin. For the hierarchical lattice model, it

follows from eq. 2.1 that for each visited state, the lowest of the 2d adjacent
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barriers is distributed as

p(∆Gmin) =
2d

γ
exp

(
−2d∆Gmin

γ

)
. (2.8)

As this distribution is a function of γ/d, similar anomalous diffusion expo-

nents are expected for equal ratios of γ/d. This idea also explains why strong

subdiffusion is only observed for unexpectedly high γ, particularly for large di-

mensionalities d. This finding motivates the use of this ratio or ‘normalized’

ruggedness as an argument for the functional dependence α(γ/d) further below.

Next, we compared our numerically obtained anomalous diffusion exponents

α to the mean-field approximation and asked how accurately γ/d can be es-

timated from α. To that aim, Fig. 2.6 shows, as a violin plot for the largest

four PCA eigenvalues, how much scaling exponents α scatter when derived from

single trajectories for different landscapes as a function of γ/d. Note that the

considerable width of these distributions results not only from the stochastic

nature of the individual trajectories and the underlying energy landscapes but

also from their different ruggedness and dimension for given γ/d. As expected,

increasing subdiffusion is seen for increasing γ/d. For the smaller eigenvalues

and small γ/d, some superdiffusion is seen as was already explained in terms

of ballistic motion [26]. Overall, much weaker subdiffusion is seen compared to

the mean field approximation (dashed lines), with decreasing discrepancy for

larger dimensions, as also expected. Scaling exponents of large PCA eigenval-

ues decrease faster with increasing γ/d and show a lower variance, mainly due

to better sampling of these coordinates. Notably, the shown scatters generally

exhibit large overlaps for adjacent γ/d values, particularly for larger γ/d, which

suggests that reconstructions of ruggedness and dimension from subdiffusion

exponents α involve considerable uncertainties. These will be explored further

below.

As our observed anomalous diffusion exponents deviate considerably from

the functional relation 2.3 derived in a mean-field approximation (black dashed

line in Fig. 2.6), we asked which function αf,β1,β2(γ/d) describes the observed

mean anomalous diffusion exponents best. As functional forms, we considered a
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Figure 2.6: Distributions of scaling exponents of the first 4 PCA eigenvalues α0

(top left), α1 (top right), α2 (bottom left) and α3 (bottom right) in dependence

of ruggedness γ/d. Probabilities of observing an anomalous diffusion exponent

at a given ruggedness value are represented by violins. The dashed black line

indicates the mean-field approximation.

power law (see caption of Fig. 2.7) as the generalization of the mean-field result,

an exponential decay as a plausible alternative, and a linear function for com-

parison. For these three functional forms, posterior probabilities obtained via

Gibbs sampling (see methods) are shown in Fig. 2.7 A. As an example, Fig. 2.7

B shows the posterior distributions for the respective parameters (β1, β2) for
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the exponential function. As can be seen in the figure, the highest posterior

probability is obtained for the exponential function and in that sense describes

our numerical results the best among the three considered functions. Remark-

ably, the power law, for which the mean-field theory eq. 2.3 is a special case for

β1 = 2, β2 = 1, turns out to be the least probable, which suggests that a simple

modification of the mean-field theory will most likely not suffice for a quanti-

tative explanation of the anomalous diffusion exponents. We conclude that the

underlying assumption that no trajectory visits any state twice most likely does

not provide a good approximation for intermediate dimensional models.

However, although the exponential function fits the data best, it is only a

slightly better description of the numerical anomalous diffusion exponents (see

colored lines in Fig. 2.7). Therefore, we did not use any of these three functions

to extract ruggedness and dimensionality from the anomalous diffusion expo-

nents extracted from protein MD simulations further below, but rather resort

to a probabilistic approach. To that end, we used a kernel density estimator to
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Figure 2.7: (A) Average fit function for three selected functional forms (i.e.,

exponential, power law and linear) of the relation between mean scaling ex-

ponent 〈α0〉 of the first PCA eigenvalue and γ/d based on the scaling expo-

nent distributions of generated random walks.(B) Posterior probabilities of ex-

ponential αf=1,β1,β2(γ/d) = β1 exp(−(γ/d)/β2), power law αf=2,β1,β2(γ/d) =

β1 /(γ/d)β2 and linear αf=3,β1,β2(γ/d) = β1 γ/d + β2 functions obtained from

a Gibbs sampling. (C) Distribution of posterior probability of parameters for

the exponential function.
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model the joint probability density of anomalous diffusion exponents α1, . . . , α4,

γ/d, and d as observed in a total of 40,000 random walks (see methods and di-

mension reduced sketch in Fig. 2.4). This probability density will serve to obtain

distributions of γ/d and d for given α1, . . . , α4 by marginalization.

Before discussing the obtained γ/d and d, we used 2200 trajectories to es-

timate the uncertainty of these values by two independent approaches, from

the variance of the marginalized distribution of γ/d and d via cross-validation.

Figure 2.8 shows for each of the trajectories (blue dots) the actual error of the

estimate, i.e., the deviation of the estimated normalized ruggedness (A) and

dimensionality (B) from their known values that were used to build the respec-

tive underlying energy landscapes. For comparison, the average error estimate

obtained from the marginalized distributions is shown as a black dashed line. In

addition, the red line shows the cross-validation in terms of the average actual

error for 100 trajectories with the same ruggedness (or dimensionality) values,

which have not been used for the training of the kernel density. We obtained an

overall mean error of 4.2 kT for the ruggedness estimate and 10 dimensions for

the dimensionality estimate. The mean relative error of ruggedness estimation

is moderate and increases with increasing ruggedness as expected, whereas the

mean relative error of dimensionality estimates is substantially larger and in-

dependent of dimensionality. Overall, the hierarchical lattice model suggests

that it should be possible to estimate the ruggedness of proteins rather reliably

from anomalous diffusion exponents that were obtained via trajectory length

dependent principal component analysis of atomistic simulations.

2.4.2 Anomalous diffusion in realistic protein free-energy

landscapes

To this end, we used the above probabilistic model to explore ruggedness and

dimensionality of the free-energy landscapes of 500 small globular proteins se-

lected to cover known folds and functions as described in methods 2.3.5. We

carried out a 1µs MD-simulation for each of these 500 proteins and performed
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Figure 2.8: Error estimates of ruggedness and dimensionality based on cross-

validation: We randomly picked 100 random walk trajectories per ruggedness

value and estimated ruggedness and dimensionality of the corresponding inter-

mediate dimensional hierarchical model using a maximum likelihood estimator.

(A) Dependence of the error in ruggedness estimates on ruggedness γ/d. The

mean error (red line) of ruggedness estimates increases with higher ruggedness

values. (B) Dependence of the error in dimensionality estimates on dimension-

ality. The mean error in dimensionality estimates shows no clear dependence

on dimensionality. Gaussian noise with 1% variance was added in both plots for

visualization purposes.

a trajectory length dependent principal component analysis (tPCA) for each of

the trajectories as described in methods 2.3.1. From least square fits to the tra-

jectory length dependent largest eigenvalue scaling exponents α1 were obtained.

Figure 2.9 A shows the distribution of scaling exponents jointly as a function of

protein size (number of Cα atoms N) as described by the dimension dconf = 3N

by the respective configurational space.

As can be seen, almost all of the obtained scaling exponents show subdiffu-

sion (α0 < 1). In fact, ca. 90% of the scaling exponents are smaller than 0.6 and

the mean anomalous diffusion exponent is 0.3. Remarkably, no significant corre-
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Figure 2.9: (A) Subdiffusion exponents a0 as a function of configuration space di-

mensionality obtained from MD trajectories of 500 small globular proteins with

configuration space dimensionality dconf = 3N , where N is the number of Cα

atoms.(B) Estimated effective dimensionality d and configuration space dimen-

sionality.(C) Frequency of dimensionality and ruggedness estimates of 500 small

globular proteins obtained from microsecond molecular dynamics simulation.

lation between α0 and configuration space dimensionality dconf is seen (Pearson

correlation coefficient c = 0.12).

Using these anomalous diffusion exponents, we estimated the ruggedness γ

and effective dimensionality d of the 500 protein free-energy landscapes via the

above probabilistic model. Fig. 2.9 C shows the distribution of dimensionality

and ruggedness estimates of γ/d and d, where the ruggedness has been nor-

malized by the effective dimension as suggested for the simple hierarchical grid

model and shown in Fig. 2.5.

As can be seen, ruggedness values between 15 − 20 kT per dimension dom-

inate, as well as effective dimensionalities d between 40 and 60. This result is

reproducible for four independent sets of MD simulations of a test set of 200

proteins as described in methods 2.3.5. For this test set, an average standard

deviation of 1.1 kT for ruggedness and 4.8 dimensions for the dimensionality was

obtained, which is lower than the expected error from our random walk sim-

ulations. We attribute these low errors to the fact that MD simulations were

started from the same starting structure and therefore explore similar regions
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in their free energy landscape, whereas in the case of the hierarchical lattice

model, each trajectory is simulated in a different free energy landscape.

Unexpectedly, despite the fact that there is no correlation between the

ruggedness coefficient and the protein size, Fig. 2.9 C shows a strong correlation

between normalized ruggedness γ/d and effective dimensionality d (Pearson cor-

relation coefficient c = 0.21). We asked if this correlation is due to a possible

correlation between protein size and effective dimensionality. However, no such

correlation is seen in the respective scatter plot (Fig. 2.9 B, Pearson correlation

coefficient c = 0.09). Taken together, these results suggest that both the effec-

tive dimensionality and normalized ruggedness of a protein do not depend on

its size and rather are adapted to the particular function of each single protein.

Furthermore, it is remarkable that the ranges of both normalized ruggedness

and effective dimensionality (by a factor of about 1.5) are much smaller than

the scatter of protein sizes (by a factor of ca. 5) among the selected 500 proteins.

This finding suggests that, quite generally, these narrow ranges are optimal for

the function of essentially every protein.

2.5 Conclusion

In this work, we developed a method to connect simple hierarchical free-energy

lattice models to atomistic simulations of biological macromolecules. To this

end, we have characterized the high-dimensional free-energy landscape of 500 small

globular proteins in terms of effective dimensionality and distribution of free

energy barrier heights. These quantities have been obtained from anomalous

diffusion exponents observed in microsecond molecular dynamics trajectories of

these proteins.

For the hierarchical free-energy lattice model, we assumed an exponential

distribution p(∆G) ∝ exp(−∆G/γ) of static barrier heights, where γ denotes

the ‘ruggedness’ of the energy landscape, similar to a disorder temperature.

While analytic expressions have been derived for 1-dimensional [9] and high-

dimensional lattices [10], we are not aware of any result for the intermediate
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Figure 2.10: (A) Distributions of barrier heights of 3 states of myoglobin

(A0, A1, A2) estimated from flash photolysis experiments [23](B). Boxplots of

distributions of barrier heights δGcrossed that were crossed in random walks

in intermediate dimensional hierarchical lattice models with typical ruggedness

and dimensionality as estimated for the selected proteins (40−60 and 15−20 kT

per dimension).

effective dimensions relevant for biomolecules; we therefore resorted to a nu-

merical approach.

To this end, we carried out random walk simulations and found indeed

anomalous diffusion exponents that deviate from both the 1-dimensional and

high-dimensional limiting cases. A Bayesian analysis showed that, overall,

anomalous diffusion exponents decrease less steeply with increasing ruggedness

and most likely not by the inverse-law of the two limiting cases. These signif-

icant deviations suggest different mechanisms from which anomalous diffusion

behavior arises.

In the limit of infinite dimensions, random walks are equivalent to high di-

mensional continuous time random walks (CTRW), for which no state is visited

more than once and therefore the mean-field description is accurate. In partic-

ular, the probability of returning to a previously visited state approaches zero.
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As a result, anomalous diffusion in CTRWs is caused by waiting time distribu-

tions that are heavy-tailed (i.e., diverging averages) [39] and dominated by a few

extreme waiting times in states enclosed by high barriers. In contrast, for the

intermediate dimensional models discussed here, recrossings were observed with

consequences, the analysis of which is beyond the scope of this work. Based on

our observations (data not shown), we speculate that the anomalous diffusion

in intermediate-dimensional models most likely originates – similar to the 1-d

case – from high free energy barriers confining random walk trajectories to a

region in conformational space. However, anomalous diffusion in intermediate-

dimensional models differs from that of 1-d models in that, due to the higher

dimensionality of these regions, high free-energy barries are circumvented. This

effect results in a fractal-like topology of the subregion actually accessed by tra-

jectories [14]. This scenario is also supported by our observation that the height

distribution of actually crossed barriers is much lower than the overall barrier

distribution of the free-energy landscape.

In that sense, this study reveals a connection of the two main conceptual

frameworks explaining anomalous diffusion in protein dynamics, diffusion on

fractal geometries and hierarchical free-energy landscapes. Specifically, we have

shown that, for intermediate dimensionality, fractal-like topologies of accessi-

ble configurational space arise necessarily from dynamics in hierarchical energy

landscapes with very high ruggedness.

Using our numerical results, we asked how accurately ruggedness and di-

mensionality can be estimated based on anomalous diffusion exponents obtained

from non-equilibrium trajectories. For the hierarchical lattice model, we showed

via cross-validation that a maximum likelihood estimate yields an accuracy of

4.2 kT for ruggedness and 10 dimensions for the effective dimensionality.

This result enabled us to use our method to estimate ruggedness and dimen-

sionality based on anomalous diffusion exponents we observed in MD trajecto-

ries of 500 small globular proteins. We obtained typical ruggedness estimates in

the range of 15− 20 kT per dimension and effective dimensionality of 40− 60 .

The robustness of the ruggedness and dimensionality estimates for three inde-
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pendent MD simulations shows that the intermediate-dimensional hierarchical

model indeed captures features of protein free-energy landscapes that govern

the anomalous diffusion behavior in protein dynamics.

It is remarkable that neither the effective dimensionality nor the ruggedness

correlates with protein size, whereas there is a significant correlation between

effective dimension and ruggedness. Further, the ranges of both normalized

ruggedness and effective dimensionality are much smaller than the scatter of

protein sizes (by factors of about 1.5 and 5, respectively) among the selected

500 proteins. Taken together, we conclude that these two properties of the free-

energy landscape of a protein are rather adapted to the particular function of

each single protein, and that, quite generally, these narrow ranges are optimal

for the function of essentially every small globular protein.
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2.6 Supplements

2.6.1 Scaling of PCA eigenvalues for high dimensional hi-

erarchical models

The dimensionality in hierarchical lattice models determines the amount of pos-

sible transitions 2d of states to their neighboring states. The amount of possible

transitions is inversely proportional to the probability of returning to the state

which was previously visited as the number of possible transitions increase. In

the limit of high-dimensionality, this probability vanishes as recrossings get less

likely with an increasing amount of possible transitions. Therefore, all barriers

of visited states can be neglected in this limit, such that it can be assumed that

in every step a new set of free energy barriers is encountered. These free energy

barriers both determine the probability of the direction of the next step and

the waiting time t in the current state until a barrier crossing event occurs [27].

Because barriers are distributed isotropically within the grid, a random walk

trajectory resembles a free diffusion process in this approximation, if only tran-

sitions between states are considered and waiting times are neglected. It has

been shown [26] that PCA eigenvalues of free diffusion processes scale linearly

with the number of steps n

λ(T ) ∝ n(T ). (2.9)

The total time T =
∑n
i=0 ti is given by the sum of all waiting times in the

individual states, which are random variables. The waiting time distribution

within p(t) a state depends on ruggedness γ and dimensionality d. Because

in the high dimensional limit no state is revisited, waiting time distributions

p(t) are obtained directly by a probability transformation of the barrier height

distribution and is given by

p(t) ∝ t1− γ
2d . (2.10)
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For γ/d < 1, waiting times ti have a well-defined expectation value, such that

for n→ inf

T ≈ n 〈ti〉 (2.11)

λ(T ) ∝ T

〈ti〉
(2.12)

which leads to normal diffusion behavior. Anomalous diffusion behavior emerges

for γ/2d > 1, because the expectation value for the waiting times 〈t〉 diverges

for n→∞. However, for a finite number of transitions n, this expectation value

is also finite and depends asymptotically on T as

〈ti〉 ∝ T 1− 2d
γ . (2.13)

Inserting this result into 2.11 yields the scaling behavior of PCA eigenvalues in

the approximation of high dimensional random walks

λ(T ) ∝ T
2d
γ . (2.14)

For γ/2d > 1 the expectation value for the waiting times diverges.
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2.6.2 List of PDB codes of the selected proteins

’1WIT’, ’3CHY’, ’1ENH’, ’1SHF’, ’1UBQ’, ’1MJC’, ’1A6N’, ’1ARB’, ’1CUN’,

’1WAS’, ’1EP0’, ’2PTH’, ’1QAU’, ’1EBD’, ’4WBC’, ’1DYN’, ’1JAM’, ’2GO0’,

’2GIW’, ’1IFC’, ’1BP5’, ’1HH8’, ’1BS2’, ’1IXA’, ’1IER’, ’1JD1’, ’1YPR’, ’1BFD’,

’1EQK’, ’11AS’, ’1WE8’, ’1Z9D’, ’1Y8B’, ’1YEL’, ’1XX3’, ’1XHK’, ’1XQO’,

’1XKR’, ’1WHN’, ’1WIN’, ’1YB3’, ’1WK1’, ’1WFY’, ’1XSZ’, ’1WJW’, ’1WHB’,

’1WJG’, ’1WJJ’, ’1WFT’, ’1WB7’, ’1IAD’, ’1FKB’, ’1FZW’, ’2HNP’, ’1EV4’,

’1ESJ’, ’1J1Y’, ’3GRS’, ’1EHE’, ’1G5B’, ’1FZT’, ’1E09’, ’2IFE’, ’1IYU’, ’2GLT’,

’1E6Y’, ’5HPG’, ’1G6L’, ’1FHQ’, ’1I11’, ’1IMF’, ’1J22’, ’1G61’, ’1HPL’, ’1I6A’,

’1FQN’, ’1G5M’, ’1IHC’, ’1GEF’, ’1JPU’, ’1C3P’, ’1GC7’, ’1FVL’, ’1G03’, ’1G24’,

’1JH3’, ’1EJF’, ’1GQY’, ’1ITV’, ’1FID’, ’1IGP’, ’1FUO’, ’1EGL’, ’1GD5’, ’1FSZ’,

’1EO9’, ’1H8H’, ’1JR2’, ’1H41’, ’1HJZ’, ’3GAR’, ’1JAW’, ’1ILE’, ’1EY1’, ’1EW4’,

’2HGF’, ’1FVA’, ’1H5P’, ’1I39’, ’1EPU’, ’2FU3’, ’1E9T’, ’1IAZ’, ’1IJA’, ’1IVH’,

’1FX3’, ’1JR3’, ’1HT2’, ’1JYH’, ’1EUV’, ’1JHF’, ’1IFG’, ’1HUS’, ’3GCC’, ’1HD8’,

’1I4J’, ’2GYK’, ’1JW3’, ’1IMU’, ’1F7T’, ’1EQ1’, ’2G03’, ’1IJY’, ’1ETH’, ’1G41’,

’1GM7’, ’1IUH’, ’1BM8’, ’1EQ6’, ’1J33’, ’2EZN’, ’1GZT’, ’1G1E’, ’1JW2’, ’1J2M’,

’1GH9’, ’1IS1’, ’1GHH’, ’1J26’, ’1FM7’, ’2IBS’, ’1EMW’, ’1IU3’, ’1GXL’, ’1IQO’,

’1JI8’, ’1HH2’, ’1HUF’, ’1G2R’, ’1GD8’, ’1F7W’, ’1GGG’, ’1GHT’, ’1EM8’,

’1HF2’, ’1JOB’, ’1EJ5’, ’1EZA’, ’1GGW’, ’1IUR’, ’2END’, ’1J0T’, ’1JR5’, ’1G9L’,

’1DVO’, ’1FOA’, ’1FJR’, ’1I4W’, ’1LBD’, ’1L8L’, ’2TRC’, ’1U9A’, ’2TGI’, ’1TFB’,

’1T0G’, ’1SWB’, ’1LMH’, ’1TUL’, ’1V4E’, ’1SRV’, ’4MAT’, ’1SSO’, ’1TYA’,

’1M6B’, ’1KK9’, ’1TPG’, ’1S04’, ’1MOP’, ’1KNB’, ’1L1D’, ’1KSV’, ’1KEO’,

’1L5I’, ’1LTU’, ’1UNN’, ’1KO7’, ’1LBV’, ’1KVN’, ’1K0F’, ’1K3C’, ’2LIS’, ’2MOB’,

’1MT6’, ’1KRA’, ’1L8R’, ’1K6K’, ’1MI1’, ’1M3I’, ’1TE2’, ’1S12’, ’1VDH’, ’1M1L’,

’1L9V’, ’1LR0’, ’1MWP’, ’1T3B’, ’1SQR’, ’1K0S’, ’1K3W’, ’1LNS’, ’1UG2’,

’1VMG’, ’1MP1’, ’1LRE’, ’1K19’, ’1LML’, ’1U02’, ’1QLP’, ’1OTP’, ’1RV9’,

’1RYU’, ’1P9Y’, ’1OBL’, ’1QK9’, ’2NMU’, ’2NEF’, ’1OP4’, ’1RKE’, ’1QGI’,

’1PP1’, ’1RLH’, ’1Q57’, ’1RKI’, ’1Q60’, ’1QKF’, ’1PU1’, ’1N6Z’, ’1PV5’, ’1OQV’,

’1NIJ’, ’1POZ’, ’1OBG’, ’1ODG’, ’1QZM’, ’1Q92’, ’1O99’, ’1P35’, ’1NI5’, ’1R5E’,

’1RYK’, ’1RP4’, ’1R0D’, ’1RXQ’, ’1QZ4’, ’1Q5Z’, ’1PVE’, ’1NY9’, ’1R9K’,
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’1NKT’, ’1Q1V’, ’1QC7’, ’1PUJ’, ’1NG6’, ’1NK6’, ’1AB2’, ’1QAZ’, ’1B6B’,

’1NTN’, ’1EZG’, ’1R4V’, ’1BSG’, ’1D6T’, ’1CVZ’, ’1CEQ’, ’1D0N’, ’1HCC’,

’1BF0’, ’1UXC’, ’1PHP’, ’1DDG’, ’1D8V’, ’1DP0’, ’1AH6’, ’1DXK’, ’1D0B’,

’1AH2’, ’3PMG’, ’1PNO’, ’1O6D’, ’1B10’, ’1FAD’, ’1R3B’, ’1EVL’, ’1UNK’,

’1DSX’, ’1C25’, ’2PGI’, ’3PRO’, ’1WWR’, ’1QCV’, ’1BW3’, ’1DVG’, ’1F17’,

’1AI9’, ’1CD5’, ’1DCO’, ’1B2P’, ’1DTW’, ’1LDL’, ’1CDZ’, ’1BKP’, ’1BG2’,

’3RUB’, ’1BYR’, ’1BEA’, ’1QPM’, ’1CRN’, ’1OAG’, ’1DPT’, ’1C2A’, ’1AKO’,

’1CVR’, ’1AKZ’, ’1E0L’, ’1H9F’, ’1BOL’, ’1CMZ’, ’1BM0’, ’1K2Y’, ’1BY1’,

’1FD3’, ’1B78’, ’1B8W’, ’1A6S’, ’1WDE’, ’1WU2’, ’1OPS’, ’1NGN’, ’6RHN’,

’1AT0’, ’1F68’, ’1BPX’, ’1N2J’, ’2FUS’, ’1DHN’, ’1RWC’, ’1CIP’, ’1YCQ’, ’1YS9’,

’1A0G’, ’1NOG’, ’1CZ4’, ’1PKY’, ’1ERD’, ’1DPB’, ’1MM0’, ’1EAI’, ’1AA3’,

’1RL6’, ’1C3G’, ’1TSF’, ’1R2Z’, ’1UK3’, ’1CIY’, ’1BUH’, ’1AUZ’, ’1IHN’, ’1HIC’,

’1BX8’, ’1B6Z’, ’1A3A’, ’1RHX’, ’1DU5’, ’1I2T’, ’1DZO’, ’1EO0’, ’1CMI’, ’1WGR’,

’1C44’, ’2BES’, ’1A1X’, ’1D1L’, ’1Y6X’, ’1RLO’, ’1B04’, ’1RQL’, ’1XJH’, ’1AP8’,

’1A5M’, ’1XD3’, ’1XHS’, ’1NYN’, ’1Z52’, ’1CFE’, ’1QTS’, ’1NYO’, ’1W4H’,

’1UJ8’, ’1QQV’, ’1PDO’, ’1QQH’, ’1RQS’, ’1MGT’, ’1D1R’, ’1MMS’, ’1XS8’,

’2AHC’, ’1BLE’, ’1RLK’, ’1OH1’, ’1WOO’, ’1GMU’, ’1JJU’, ’1XWM’, ’1KJS’,

’1VG5’, ’1BSH’, ’1BC9’, ’1UTG’, ’1DWU’, ’1LFP’, ’1BGW’, ’1YGE’, ’1D5T’,

’1PVS’, ’1IUQ’, ’1YGY’, ’1DZF’, ’1C8Z’, ’1JRM’, ’1CBY’, ’1B75’, ’1NWB’,

’1J1V’, ’1H3L’, ’1BEG’, ’1EWS’, ’1WJ2’, ’1E8P’, ’1ADN’, ’1CO4’, ’1DCQ’,

’1D0Q’, ’1P7A’, ’1ZFD’, ’1UOY’, ’1AFP’, ’1AD2’, ’1DT9’, ’1SYX’, ’1KPT’,

’1WHR’, ’1WIH’, ’1XHJ’, ’1WHZ’, ’1WHQ’, ’1OUO’, ’1B2V’, ’1WN9’, ’1YDL’,

’1WPS’, ’2FFM’, ’1QW2’, ’1Q5F’, ’1O8R’, ’1XRS’, ’1MK0’, ’1WOT’, ’1YLQ’,

’1JBI’, ’1KAF’, ’1NNV’, ’1WJ6’, ’1NYR’, ’1DUJ’, ’1VCC’, ’1WFR’, ’1QHK’,

’2HBB’, ’1C97’, ’1WIK’, ’1S3A’, ’1OGD’, ’1RZW’, ’1RO7’, ’1AUA’, ’1AQT’,

’1WFJ’, ’1WFM’, ’1X7F’, ’1CL3’, ’1HOE’, ’1YEZ’, ’1FGP’, ’1WHM’, ’1WFW’,

’1NKG’, ’1CQ3’, ’1B7Y’, ’2B97’, ’1NPR’, ’1BGF’, ’1ABV’, ’1AF7’, ’1DP3’,

’1WHC’, ’1WIX’, ’1RQ6’, ’1OYW’, ’1S7E’, ’1TDP’, ’1YOZ’, ’1WGW’, ’1U84’,

’1PUZ’, ’1UG0’, ’1PV0’, ’1NO1’, ’2HP8’, ’1Z5B’, ’1HNR’, ’1WIJ’, ’1C1K’, ’1X9B’,

’1S2O’, ’1B0A’, ’1DOT’, ’1XS5’, ’1XVI’, ’1CBF’, ’1DJ0’, ’1RK6’, ’1Y51’, ’1W6X’,

’1IMT’, ’1AA7’, ’1ST7’, ’1G71’, ’1WPB’, ’1AMM’, ’1ALC’, ’2AYH’, ’2OVO’,
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’1NKR’, ’5CPA’, ’1F7U’, ’4AKE’, ’1AST’, ’1BPI’, ’1CNV’, ’1BD8’, ’1GAD’,

’1A3H’, ’1A4V’, ’1BQG’, ’1WEK’, ’1LB6’, ’1CEM’, ’2BAA’, ’1AKE’, ’1AAJ’,

’1GSO’, ’1DDE’, ’2F21’, ’2HBA’
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2.6.3 Structures of the 500 selected proteins

Figure 2.11: Structures of 100 of the selected 500 proteins used as starting

structures for the MD simulations
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Chapter 3

A universal scaling relation

between accessible configuration

space volume and escape rates in

intermediate dimensional

hierarchical free-energy

landscapes



3.1 Introduction

The internal dynamics of proteins, the essential building blocks of life, gov-

ern their function. Due to the complex structure of proteins and their many-

faceted interactions among their constituents and surroundings, their internal

motions occur on a broad range of time scales from picoseconds to seconds.

Early flash-photolysis experiments on the unbinding kinetics of carbon monox-

ide from myoglobin by Frauenfelder et al. suggested that this broad range arises

from a hierarchical structure of protein free-energy landscapes [4].

The free-energy landscapes of complex biomolecules such as proteins consist

of a vast number of isoenergetic configurations [40]. Early flash-photolysis ex-

periments suggested that the observed non-exponential kinetics originates from

hierarchically structured free-energy barriers between different protein configu-

rations [4]. These free-energy barriers restrict the accessible configurations to a

smaller subset of accessible configurations for a given time scale of the dynamics.

The hierarchical structure of these free energy barriers ensures sufficiently high

free-energy barriers to restrict the accessible configuration space to increasing

but finite volumes on all time scales. Due to this relation between time scales

and corresponding accessible configuration space, diffusion processes in such a

hierarchically structured free-energy landscape are anomalous [9].

Such anomalous diffusion behavior was observed in collective motions in

molecular dynamics trajectories of proteins [13] and small peptides [14]. How-

ever, different sources of this anomalous diffusion behavior have been suggested,

besides a hierarchically structured protein free-energy landscape: a fractal struc-

ture of accessible configuration space [14] and a projection effect arising from

the analysis of collective coordinates [15]. Here, we assume that the observed

anomalous diffusion behavior is a feature of protein dynamics and not a pro-

jection artifact. Our results from chapter 2 suggested that the two remaining

sources, i.e. a hierarchically structured free-energy landscape and a fractal ac-

cessible configuration space, are compatible. We observed frequent revisiting of
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states in a well-defined region of accessible configuration space in higher dimen-

sional hierarchical free energy landscapes, which lead us to the conjecture that

these regions exhibit a fractal structure.

Such a hierarchical structure implies that a diffusion process like the internal

dynamics of proteins as they explore their configuration space show anomalous

diffusion. Indeed, anomalous diffusion was observed in current molecular dy-

namics simulations of peptides and small globular proteins [13] [14]. The source

of this anomalous diffusion behavior was suggested to be either the hierarchical

structure of protein free-energy landscapes [13] or the fractal structure of acces-

sible protein configuration space [14]. Our results of chapter 2 suggested that

both models are compatible because accessible configuration space in hierarchi-

cal free-energy landscapes has a fractal structure.

To test this conjecture and to elucidate the structure of accessible configura-

tion space in hierarchical free-energy landscapes, we investigated the accessible

configuration space in a d-dimensional hierarchical model free energy landscape

that was used to model anomalous diffusion observed in proteins. These mod-

els are d-dimensional cubic lattices where static exponentially distributed bar-

riers determine transitions between states. Here, the distribution of barriers

p(∆G) = 1/γ exp−∆G/γ is governed by a parameter γ that represents the

’ruggedness’ of a model free-energy landscape. We have shown in the previ-

ous chapter that γ/d determines the anomalous diffusion behavior of random

walks in the model. Depending on how much γ/d affects accessible configura-

tion space volume and escape rates, it should be possible to determine to what

extent the two contribute to the anomalous diffusion behavior. We found that

γ/d influences both escape rates and accessible configuration space volume from

which we conclude that both quantities influence the subdiffusion behavior in

hierarchical free-energy landscape. To our surprise, we found a universal scaling

relation between the accessible configuration space volume and corresponding

escape rate that quantifies the collective influence of both on the anomalous

diffusion behavior.

Following this conjecture, we investigated in this work the accessible config-
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uration space in random walks in 3 to 10 dimensional hierarchical models.

In particular, we investigated how accessible configuration space volumes

and escape rates from these confined regions depend on the barrier height dis-

tribution which determines the anomalous diffusion behavior as we showed in

chapter 2. How much accessible configuration space volumes and escape rates

depend on the barrier height distribution shows how much both contribute to

the anomalous diffusion behavior.

3.2 Theory

Our random walk simulations in the intermediate dimensional hierarchical lat-

tice model presented in chapter 2 showed that trajectories only visited a limited

set of states instead of exploring the full state space. Such a set of states is what

we call accessible configuration space in the following. Additionally, our results

suggested that the topology of the accessible configuration space is a source of

anomalous diffusion, which led us to investigate the properties regions further.

To this end, we first specify in the following how accessible configuration

space and corresponding escape rates govern diffusion processes in intermediate

dimensional hierarchical models. In this model, states in configuration space

are represented by nodes in a d-dimensional cubic lattice. Edges represent tran-

sitions between states such that each state in a d-dimensional cubic lattice has

2d neighbouring states. Transition rates rij between states are determined by

free energy barriers ∆Gi

ri = e−∆Gi (3.1)

where ∆Gi are uncorrelated random variables which are distributed according

to

p(∆Gi) =
1

γ
e

∆Gi/γ (3.2)

where γ represents the ’ruggedness’ of a model free energy landscape. We showed

that random walks are dominated by the highest transition rates (lowest bar-

riers). Both ruggedness and dimensionality affect the maximal transition rate
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(minimal barrier) to leave a state: With increasing ruggedness it is less likely

to encounter a low barrier within a random walk while with increasing dimen-

sionality it becomes more likely because of the increasing number of possible

transitions. We have shown that this effect approximately is compensated by

increasing ruggedness such that γ/d ≈ const. Therefore, we introduced a nor-

malized ruggedness γ/d and found that this quantity determines anomalous

diffusion in intermediate dimensional hieararchical free-energy landscapes.

Configuration space exploration in this model is described by diffusion pro-

cess described by the propagator equation

p(t+ ∆t) = M(∆t) · p(t), (3.3)

where ~p = (pi . . . pN ) represents probabilities of occupying states in the cubic

lattice with N states. M is a symmetric transition rate matrix where rates are

normalized and determined by barriers such that

Mij =


1∑2d

k=0 e
−∆Gik

e−∆Gij if transition in grid

0 else

(3.4)

where d is the grid dimension and ∆Gij = ∆Gji are exponentially distributed

random barriers as described in the previous section. Random walks can be

generated using eq. 3.3 iteratively with delta distributed probability densities

p(t) = δ(t)ij which represent the occupied state in a random walk at time t.

In each step of the next occupied state is drawn at random with probability

p(t+ ∆t).

Probabilities of occupying a specific state i at time T are composed of the

probability Pi(n+1) of having arrived at this state after n prior transitions and

with occupation times {∆tj}n+1
j=0 such that T =

∑n+1
j ∆tj such that

pi(T ) = p̃i(n+ 1) p({∆tj}n+1
j=0 ) (3.5)

where p({∆tj}n+1
j=0 ) is the probability of observing a sequence of occupation

times. Here, the first term p̃i(n+ 1) describes the effective configuration space
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exploration while the latter describes the time spent in individual states. For

a large number of (effective) steps n → ∞ with frequent revisiting of states,

the time spent in individual states is subject to the central limit theorem, such

that T ≈ n 〈∆t〉 and p({∆tj}n+1
j=0 ) ≈ δ (T − n 〈∆t〉). In this limit, the term is

replaced with its expectation value and does not contribute to the anomalous

diffusion behavior.

The remaining effective accessible configuration space is also given by a

propergator equation

p̃(n+ 1) = M̃ · p̃(n), (3.6)

where p̃(n) = (p1 . . . pn) are the probabilities of arriving at a state after n

transitions between states. The entries of the transition matrix M̃ is given by

M̃ij =

0 i = j

1
ri
Mij i 6= j

(3.7)

and is non-symmetric and row stochastic such that an eigenvalue decomposition

exists with real eigenvalues 1 ≥ λi > −1. Due to the row stochasticity there

is one eigenvalue λ0 = 1 with a corresponding right eigenvector v0 = ~µ which

represents the probability µi of visiting a state i in phase space. All remaining

eigenvalues are degenerate due to disorder introduced through the random bar-

riers and corresponding left and right eigenvectors have a finite support where

they are non zero. The number of states V which are included in the support

of an (left or right) eigenvector vi represent the accessible configuration space

volume on a time scale given by |λi|.
To leave the accessible configuration space region with volume V a state at

its boundary Ω (see Fig.3.1) has to be occupied and the next occupied state

must be outside. Therefore, the escape rate r is given by:

r =
∑
i∈Ω

µi

∑
j /∈V

M̃ij

 . (3.8)

The inverse of the escape rate r corresponds to the amount of steps n that are

on average needed in order to escape from the accessible configuration space
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Figure 3.1: Sketch of accessible configuration space volume in case of a 2-

dimensional lattice. Random walk trajectories in the intermediate dimensional

hierarchical lattice model frequently revisit a limited of accessible states shown

as circles in the figure. We define the number of these states as the accessible

configuration space volume. In order to escape from

volume. To investigate how the accessible configuration space volume V and

escape rates r depend on γ/d we simulated random walks in intermediate di-

mensional hierarchical free energy landscapes as analytical results are not at

hand for these expressions.

Due to the high dimensionality of the considered landscapes analytical ex-

pressions for the eigenvectors of M̃ are not available. Also, numerical eigenvector

decomposition is not feasible for a pre-computed grid as the number of states in

a cubic lattice grows exponentially with the number of dimensions. Because of

this circumstance, we resorted to a numerical approach where regions of acces-

sible configuration space are created on-demand as described in chapter 2.3.2.

3.3 Methods

We generated random walks in intermediate dimensional lattices with 40 −
60 dimensions and 15 − 20 kT per dimension . Simulations of random walks

were performed using Gillespie’s algorithm [27]. In these simulations, portions

of the free-energy landscape lattice were generated dynamically on demand as
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During the simulations the number of visits to each state within the lattice was

monitored. Once each state is revisited at least 100 times, the total number

of visited states is used as the accessible configuration space volume V . Next,

simulations are continued until a new state that was not previously occupied was

found. The inverse number of transitions between states serves as an estimate

for the escape rate r. This simulation protocol was repeated 100 times for each

considered dimensionality and ruggedness value.

3.4 Results and Discussion

Using the simulation protocol described in section 2.3 we first asked how ac-

cessible configuration space volume V and escape rates depend on normalized

ruggedness and dimensionality of our model.

Figure 3.2 A shows the dependence of average accessible configuration space

volume on normalized ruggedness and dimensionality. As can be seen, increased

Figure 3.2: Dependence of accessible phase space volume and escape rates on

ruggedness and dimensionality. (A) Accessible configuration space volume and

(B) escape rates in dependence of ruggedness with color coded dimensionality

dependence.

ruggedness restricts the accessible configuration space to a smaller volume.

Overall, the accessible configuration space is smaller for lower dimensionality.
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Note, that this effect does not arise directly from the dimensionality of config-

uration space as volumes increase with dimensionality. Rather, the topology of

accessible configuration space resulting from the free-energy landscape depends

on its dimensionality. The difference in accessible volume between configuration

spaces with different dimensionalities decreases with increasing dimensionality.

Only configuration spaces with dimensions smaller than four significantly devi-

ate from the higher dimensional cases.

In the second panel B of Fig. 3.2 the obtained escape rates are shown in de-

pendence of ruggedness. Escape rates decrease as well with increasing rugged-

ness. Also, in this case we observe a trend with respect to increasing dimension-

ality as escape rates are overall lower for lower dimensional models. This effect

is explained by increasing amount of states at the boundary as the number of

neighbouring states N = 2d increases with increasing dimensionality. For higher

dimensions this effect also seems to become independent of dimensionality, but

much weaker as for the accessible configuration space volume.

Taken together, these results show that both accessible configuration space

volume, as well as escape rates, are dependent on the ruggedness in the hierar-

chical lattice model.

To find a suitable description of this combined influence of ruggedness on

accessible configuration space volumes and escape rate, we asked next how acces-

sible configuration space volumes and escape rates are related. Fig. 3.3 shows in

A the accessible configuration space volume V as a function of the correspond-

ing escape rate r with color coded dimensionality and in B with color coded

ruggedness. Unexpectedly, we find a scaling relation between V and r shown as

a line in the log-log plot. The inset in Fig.3.3 A shows a linear fit to the double

logarithmic data which yields the scaling relation

〈V 〉 ∝ − 〈log r〉−4.24±0.24
. (3.9)

For low V , deviations from this scaling behavior are observed, because here

the smallest possible accessible configuration space volume of two states is ap-

proached (see dashed line in Fig.3.3). Also here, we observe the dependence of V
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and r on dimensionality explained above. While the scaling exponent is slightly

lower for lower dimensionality, the overall scaling behavior is very similar.

Taken together, we conclude that both the structure of accessible configura-

tion space and escape rates are responsible for the anomalous diffusion behavior

observed in diffusion processes in the hierarchical lattice model. While the

present analysis does not show the fractal nature of accessible configuration

space the obtained scaling relation gives evidence for it. Such fractal structures

might occur as low barriers form a network of ‘bonds’ between accessible states

where the normalized ruggedness determines the probability of forming such a

bond and thereby the volume of accessible configuration space. The normal-

ized ruggedness also determines the statistics of the lowest barrier height over

which the accessible configuration space is escaped. This lowest barrier governs

the escape rate out regions of accessible configuration space. As this escape

rate decreases with the accessible configuration space volume in intermediate

dimensional hierarchical free-energy landscapes, it is also a source of anomalous

diffusion, similar to the simple the 1-dimensional case [9].

Figure 3.3: Dependence of accessible configuration space volume on escape rates

with color coded dimensionality (A) and ruggedness (B). Due to the discrete

grid the lowest possible phase space volume is 2 states which is indicated by the

dashed line.
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3.5 Conclusion

We have shown that random walks in simple hierarchical lattice models, used to

model configuration space exploration of proteins, are goverened by a confined

accessible configuration space volume and corresponding escape rates. Both

quantities have been identified as sources of anomalous diffusion [24] [14], and

we asked which of the two causes subdiffusion in hierarchical free-energy land-

scapes. In an earlier work we identified the normalized ruggedness of hierarchical

free-energy landscapes as the parameter which directly drives anomalous diffu-

sion behavior. If either of the two possible sources is affected by changes in

ruggedness it most likely contributes to the anomalous diffusion behavior.

We found that the normalized ruggedness both affects accessible configura-

tion space volume and escape rates similarly. Based on this finding, we conclude

that a combination of the two parameters is the source of anomalous diffusion

behavior in hierarchical free-energy landscapes. This combination is best de-

scribed by a scaling relation between accessible configuration space and corre-

sponding escape rates. This scaling relation provides evidence that accessible

configuration space of diffusion processes in hierarchical free energy landscapes

possesses a fractal structure formed out of a network of low barriers. However,

this fractal structure is most likely not the singular source of anomalous diffu-

sion in hierarchical free-energy landscapes and escape rates do contribute to the

anomalous diffsion behavior.

The scaling relation we found also makes an exciting prediction for the in-

ternal dynamics of proteins as there should be a similar relation if protein free-

energy landscapes indeed exhibit a hierarchical structure. If this prediction is

correct it would be shown that anomalous diffusion in protein dynamics arises

from a hierarchical structure of protein free energy landscapes. Moreover, as-

suming such a relationship holds, one could substantially improve enhanced

sampling methods in molecular dynamics simulations, as the rate of configu-

ration space exploration could be estimated based on the volume of accessible
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configuration space. In that way, the longstanding sampling problem of molec-

ular dynamics simulations could be addressed more systematically.
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Chapter 4

An efficient sampling algorithm

to generate trajectories in

hierarchical free-energy

landscapes



4.1 Introduction

Hierarchical free-energy landscapes occur in many different complex systems,

including protein dynamics, semiconductors, and glasses. Often diffusion pro-

cesses in these landscapes are particularly interesting as they govern e.g., the

configuration space exploration proteins [13] or the conductance in semiconduc-

tors [41]. Whereas for lower dimensional hierarchical model free-energy land-

scapes, analytical solutions for diffusion in a hierarchical free-energy landscape

are available, higher dimensional hierarchical models often can only be investi-

gated via simulations of trajectories.

However, sampling trajectories in higher dimensional hierarchical free energy

landscapes with high ruggedness values is a computationally challenging task in

itself. Due to high free energy barriers ranging over many time scales, trajec-

tories are often trapped in a small subset of states. This circumstance makes it

computationally very costly to obtain the relevant time or ensemble-averaged

quantities. Yet, because free energy landscapes are known in such models, it

should be possible to find a suitable enhanced sampling method that exploits

this information.

Here, we present an enhanced sampling method that facilitates orders of

magnitude faster sampling in situations where trajectories are trapped in hier-

archical free-energy landscapes. The idea of this method is based on Gillespie’s

algorithm, an established method to speed up sampling in random walk simula-

tions. In this algorithm, instead of sampling repeated unsuccessful attempts to

leave a state, the number of these until a transition to a new state occurs is es-

timated based on the known transition rates, and time is advanced accordingly.

In that way, only successful transitions are simulated in each step, and it has

been shown that this procedure still yields exact statistics of occupation times

and transitions.

Applying the same idea for the sampling in traps of hierarchical free energy

landscapes, instead of sampling transitions within a trap, we estimate the num-
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ber of transitions before a trap is escaped, based on the known transition rates.

We show that this method yields accurate results if the intra-trap dynamics is

Markovian, i.e., a local equilibrium is reached before leaving the trap. However,

these are precisely the cases where conventional Gillespie sampling runs into

problems.

Based on this method, we propose an algorithm that drastically increases

sampling speed and show that it yields approximately correct escape times and

probabilities in the case of intermediate dimensional hierarchical lattice models.

4.2 Theory

Hierarchical free-energy landscape models have been used to describe complex

systems, including protein dynamics, semiconductors, and glasses. Whereas for

low dimensional models, analytical solutions exist, for high dimensional only

numerical approaches are available. These numerical approaches can be very

computationally costly, especially for higher-dimensional models with high free

energy barriers, such as those used to model the free energy landscapes of the

internal dynamics of proteins. In fact, for high-dimensional hierarchical free-

energy landscape models, a very similar sampling problem appears similar to

the well-known sampling problem of molecular dynamics simulations of proteins.

This sampling problem is characterized by trajectories sampling within free-

energy traps enclosed by high free-energy barriers instead of exploring the entire

state space. In molecular dynamics simulations of proteins, this problem was

addressed by various enhanced sampling techniques. This work presents a simi-

lar approach for improving sampling in trajectories of intermediate-dimensional

hierarchical lattice models. Whereas this method is in principle applicable to

improving sampling of any discrete model described by a master equation, we

show its applicability in the case of an intermediate-dimensional lattice model

that we used to model anomalous diffusion observed in the internal dynamics of

proteins. This model consists of a d-dimensional cubic lattice of states separated

by exponentially distributed barriers as described in chapter 1. We showed in
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chapter 2 that the normalized ruggedness parameter γ/d determines anomalous

diffusion in this model. We found that generating sampling that explores most

dimensions is for high normalized ruggedness (> 20 kT) is computationally very

costly, as random walk trajectories get trapped in confined regions of the state

space.

To mitigate this sampling problem, we employed an enhanced sampling al-

gorithm that is inspired by Gillespie’s algorithm [27]. In Gillespie’s algorithm,

only those transitions between different states are sampled, and the number of

steps the system stays within the same state is determined from a geometric dis-

tribution. Due to the Markov assumption for the dynamics within a state, this

approximation is exact. We utilized the same idea for circumventing sampling

within confined regions: Instead of sampling transitions within a confined re-

gion, we estimate the probability of the number of transitions n until an escape

event occurs and samples from a to be determined distribution as numbers of

transitions. This approach is not exact because dynamics within a confinement

region is not memoryless but yields a better approximation for regions with

longer escape times.

4.2.1 Theoretical background of the method

The probability of escaping pesc a confinement region is given by the probabil-

ity of occupying a boundary state µi and the probability pij of transitioning

from state i at the boundary to a state j which is outside the boundary of the

confinement region as

pesc =
∑
i∈Ω

µi
∑
j /∈V

pij , (4.1)

where Ω is the set of states at the boundary of a confinement region and V is

the set of all states within the confinement region. If the confinement region is

stable enough that a there are a lot of transitions between states, the number

of transitions n before leaving is memoryless,

Pr(n > s+ t|n > s) = Pr(n > t).
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Therefore, escape attempts are statistically independent events and the number

of transitions T within a confinement region until an escape event occurs are

exponentially distributed as

p(n) ∝ (1− pesc)n−1pesc ≈ elog(1−pesc)n. (4.2)

Based on the assumption that a sufficient amount of transitions within a con-

finement region occurs before leaving, we estimate µi as the fraction of visits to

state i and the total amount of transitions. The number of visits to each state

is sufficient to calculate time averages, as these do not depend on the particular

order each state is visited. The next state j outside of a confinement region is

determined by the probability

pj =

∑
k∈Ω pkj∑

l∈Ω̄

∑
k∈Ω pkl

(4.3)

where Ω̄ is the set of states outside of the confinement region with a connection

to its boundary.

4.2.2 The implemented Algorithm

Taken together, equations 4.1 and 4.3 suggest the following enhanced sampling

algorithm. Sampling is performed using the simple Gillespie algorithm until

a trajectory is trapped. We chose a heuristic approach to determine when

trapping events happen by counting the revisitings of states. If this number

exceeds 100 revisitings, we assume that the dynamics within the visited states

is memoryless and bootstrap the number of steps within this trap from an

exponential distribution according to eq. 4.2. We determine the weight wi by

which each individual state i contributes to the desired time-averaged quantity

is determined by wi = n 〈∆t〉 where 〈∆t〉 is the average time spent within a

state We approximate 〈∆t〉 with the sample-mean of the observed waiting times

of the initial Gillespie sampling. The first state visited outside a trap is chosen

randomly from a probability distribution according to eq. 4.3. After this state is

determined, desired time averages are updated and sampling is continued with

Gillespie’s algorithm until the next trapping event.
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4.3 Methods

To estimate the error introduced by this enhanced sampling algorithm, we gener-

ated 100random walks in confinement regions with normalized ruggedness values

ranging from 21 kT to 29 kT and dimensionality values of 3 to 10 dimensions

with brute-force Gillespie sampling until an escape event occurs. In this range

of ruggedness parameters typically, sampling problems occurred, in particular,

in lower-dimensional models.

The most relevant quantity for random walk dynamics that cannot be esti-

mated from the intra-trap dynamics alone is the number of steps until an escape

event occurs. We, therefore, compared escape times from brute-force Gillespie

sampling with adaptive free-energy landscape generation as described in 2.3.2

with randomly sampled escape times from eq. 4.2.

To verify the improvement in sampling speed, we generated random walk

trajectories between 107 and 109 steps with the same set of parameters with

our enhanced sampling scheme and compared the resulting compute (wall-)

times.

All random walk calculations were performed on a Intel Xeon CPU W3550.

4.4 Results and Discussion

4.4.1 Accuracy of the enhanced sampling algorithm

The distributions of calculated and estimated escape times for different rugged-

ness values are shown in Fig. 4.1 (see Fig. 4.4). All generated trajectories with

the same normalized ruggedness γ contribute to each kernel density plot, in

particular also those, with different dimensionality values. As can be seen,

both distributions of escape times by Gillespie sampling (solid line) and ran-

dom sampling (dashed line) cover the same range and are rather independent

of ruggedness values. However, fluctuations in observed escape times are rather

high. The mean relative error of escape times is approximately 0.4% while the
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average variance of the relative error is approximately 20%. This error is not

systematic as simulated and randomly sampled escape times are not correlated

(see Fig. 4.5). This behavior is to be expected as models with different di-

mensionalities were compared among each other. We have shown in chapter 1

that anomalous diffusion behavior of models with equal normalized ruggedness

but with different dimensionalities show similar anomalous diffusion behavior

on average but with large fluctuations.

4.4.2 Inprovement in performance

Next, we asked how much our enhanced sampling algorithm improves sampling

speed. Figure 4.2 shows the time it takes (wall-time) Twall to compute a ran-

dom walk trajectory of length T . Overall, our implementation of the enhanced

sampling algorithm (green dots) is, on average, at least an order of magnitude

faster than our implementation of the standard Gillespie’s algorithm (blue dots).

Whereas Gillespie’s algorithm, as expected, shows on average a linear increase

in computing time for increasing trajectory lengths, our enhanced sampling al-

gorithm shows sub-linear scaling with an approximate exponent of 0.78± 0.07.

Longer trajectory lengths lead to a drastically larger spread of computing

times for the enhanced sampling method. For 107 time steps, the spread of

computing time is around one order of magnitude, it increases up to 4 orders of

magnitude for 109 steps. This tendency is more pronounced for the enhanced

sampling method compared to Gillespie’s algorithm. It is to be expected that

sampling of trajectories that are not often trapped does not benefit from the

enhanced sampling method. Therefore, Gillespie’s algorithm and the enhanced

sampling algorithm should show the same performance in these cases. This

effect causes the increasing spread in computing times of the enhanced sampling

method because longer trajectories are more likely to escape their ’initial’ trap

and explore state space more freely. For these trajectory lengths, a mixture of

the performance of the Gillespie algorithm and the enhanced sampling algorithm

is observed.
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Figure 4.1: Distribution of escape times from a confinement region in random

walk simulations and bootstrapped amount of steps based on the escape rate

determined in eq. 4.1. The color represents different normalized ruggedness

values. For a non-logarithmic plot see Fig. 4.4.

Also, Fig. 4.3 indicates that it is mainly the lower normalized ruggedness

values that show the low performance. The former hypothesis also explains this

effect, as lower normalized ruggedness leads to shorter escape times from traps,

as shown in chapter 3.

In summary, we have shown that the computing performance of sampling

random walks generally benefits from our enhanced sampling method. However,
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it is only effective in high-ruggedness regimes, where trajectories are trapped

for long times.
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slope = 0.78± 0.2

Gillespie’s algorithm

Enhanced sampling

Figure 4.2: Performance of our enhanced sampling algorithm compared to Gille-

spie’s algorithm: The figure shows how much computing time (y-axis) is needed

on a single thread on a Intel Xeon CPU W3550 to generate a random walk

trajectory of a certain length(x-axis). Shown as blue dots are simulations with

the standard Gillespie’s algorithm and shown as green dots our enhanced Gille-

spie’s algorithm. A 0.1% Gaussian noise was added to the observed values for

visualization purposes.

4.4.3 Conclusion

This work presented an enhanced sampling method that improves the sampling

of random walks in a hierarchical free energy landscape. The principle behind

this method is not restricted to random walks in hierarchical free-energy land-

scapes. It can be applied, quite generally, to random walks in models where a
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Figure 4.3: Ruggedness dependence of the performance of our enhanced sam-

pling algorithm. The colored dots show how much computing time (y-axis) is

needed for generating a random walk trajectory (x-axis). The collor shows the

corresponing normalized ruggedness value.

master equation governs transitions between states. However, our results show

that only models where trajectories are trapped in a confined region of state

space would benefit from this method.

Strictly, it is also only exact in such models because it assumes Markovianity

for the intra-trap dynamics. Here, we showed that this assumption holds in

the case of d-dimensional hierarchical lattice models with high ruggedness to

a good approximation because the method reproduced escape times of brute-

force Gillespie simulations. However, we think that the accuracy of this method

could be improved by explicitly taking into account the intra-trap dynamics

instead of assuming Markovianity. The intra-trap dynamics is given by a master

equation that can be numerically solved. In this way, the memory introduced by

the system’s initial conditions entering the trap at a specific state is explicitly
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treated, such that the assumption of Markovianity can be dropped. This should

also improve computing time in hierarchical free-energy landscapes with lower

ruggedness.

An interesting outlook that the basic idea of this method offers is that it

could yield an analytical solution, also for the intermediate dimensional case.

The 1-dimensional case could be solved analytically using a renormalization

group approach. In this approach, states that are available to a random walk

on a given time scale are eliminated and replaced by a single ’macro’ state.

Afterwards, free-energy barriers between the remaining states are renormalized,

and the reduced model is mapped onto the original lattice. Similarly, states

within traps in intermediate dimensional hierarchical models could be elimi-

nated and free-energy barriers connecting traps are renormalized accordingly.

However, because the topology of the interconnections between trap ’macro’

states is not a cubic grid as for the 1-dimensional case, it cannot be mapped to

the original grid. This problem suggests using randomly distributed points as a

state-space instead of a cubic grid as it would be possible to map the stat space

back to the original in that case.
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Figure 4.4: Steps needed to escape a confinement region in random walk simu-

lations and bootstrapped amount of steps based on the escape rate determined

in eq. 4.1 for random walks in different ruggedness values indicated by the color.
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Figure 4.5: Steps needed to escape a confinement region in random walk simu-

lations plottet against a bootstrapped amount of steps based on the escape rate

determined in eq. 4.1 on a non-logarithmic scale for random walks in different

ruggedness values indicated by the color.
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Chapter 5

Conclusion



The central aim of this work was to investigate the hierarchical structure

of the protein free-energy landscape. To that end, we generated molecular

dynamics trajectories of 500 small globular proteins, investigated the anomalous

diffusion behavior arising from the hierarchical structure of their free-energy

landscapes, and obtained anomalous diffusion exponents. Using d-dimensional

hierarchical lattice model, we estimated barrier-height distributions and effective

dimensionalities of free-energy landscapes of each protein from the obtained

anomalous diffusion exponents. As a result, we gained insights into how a

hierarchical structured free-energy landscape governs dynamics in general and

protein dynamics in particular.

We found that the internal dynamics of proteins, in general, shows anomalous

diffusion. This anomalous diffusion was previously observed for small peptides

and small globular proteins and was attributed to different sources. In partic-

ular, it has been discussed that it arises from a projection effect and does not

reflect the structure of protein free-energy landscapes but rather the choice of

the (linear) collective coordinates. For high-dimensional free diffusion, it has

been shown that using the analysis method used to investigate anomalous dif-

fusion in proteins (trajectory-length dependent principal component analysis)

does not yield anomalous diffusion as a projection effect. We have also shown

that anomalous diffusion behavior arises from the ruggedness of the free-energy

landscapes in the case of high-dimensional hierarchical models. An explana-

tion for the absence of projection effects is that in trajectory-length dependent

principal component analysis, the trajectory is projected on different collective

coordinates on different time scales. In the cases where anomalous diffusion was

shown to be a projection effect, a fixed set of coordinates was used. However,

we cannot rule out that the observed anomalous diffusion behavior is a projec-

tion effect for intermediate dimensional hierarchical models and proteins. This

aspect is a matter of current debate and should be further explored in future

work. In particular, it is assumed that anomalous diffusion arises from memory

introduced by the use of linear collective coordinates, which suggests the use of

non-linear collective coordinates such as Markov models. Assuming that these
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non-linear collective coordinates are a good representation of the eigenfunctions

of the propagator of protein dynamics, projections are free of memory. If such

projections still show similar anomalous diffusion, it could be concluded that

the observed anomalous diffusion is not a projection effect. Attempts in that

direction have already been made in the case of peptides [42].

We think it is rather likely that the more significant part of the observed

anomalous diffusion in protein dynamics does not arise from a projection effect.

Based on that, essentially, two explanations of the anomalous diffusion behavior

remain: a fractal structure of the accessible configuration space of proteins and

a hierarchical structure of the free-energy landscape of proteins. In an attempt

to decide which of the two governs anomalous diffusion in protein dynamics

we learned that both arise from a common cause and, in this sense, are ”two

sides of the same coin”. This finding rests on the evidence that the topology of

accessible configuration space of trajectories in higher dimensional hierarchical

free-energy landscapes is the cause for the anomalous diffusion behavior. In par-

ticular, we found that both accessible configuration space volume and escape

rates are responsible for the anomalous diffusion behavior are responsible for

anomalous diffusion. Unexpectedly, we found a scaling relation between these

two quantities that describe their combined influence on the anomalous diffu-

sion behavior. If protein free-energy landscapes indeed exhibit a hierarchical

structure, we would expect a similar relation. This prediction could be tested in

future work by analyzing the accessible configuration space volumes and escape

rates in Markov state models generated from MD trajectories.

Further, we have shown that the ruggedness and dimensionality of hierar-

chical free energy landscapes both for proteins and hierarchical lattice models

can be estimated from anomalous diffusion exponents with a reasonably small

error of ∼ 5 kTfor ruggedness estimates and 10 dimensions for dimensionality

estimates. Neither in the literature analytical solutions for the intermediate

dimensional hierarchical model can be found, nor we have been able to derive

it such that we had to resort to a numerical approach. It was possible to gen-

erate enough sampling in the relevant ruggedness and dimensionality regimes,
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where trajectories typically are trapped in a small subset of states because we

developed a novel enhanced sampling technique. The idea of this enhanced

sampling technique is that, instead of sampling within a region where trajecto-

ries are trapped, to estimate the number of steps until the system escapes from

the trap. It should be possible to expand this idea towards a renormalization

group approach that could yield an analytical solution in future work. A similar

renormalization group approach was employed to obtain the analytical solution

of the 1-dimensional case [8] [9].

Finally, we estimated the ruggedness and dimensionality of protein free-

energy landscapes based on our numerical results. We obtained typical nor-

malized ruggedness estimates of 15 − 20 kT per dimension and estimates for

the effective dimensionality of 40 − 60 which are reproducible in independent

MD trajectories with a standard deviation of 1.1 kT and 4.8 dimensions respec-

tively. Remarkably, neither the effective dimensionality nor the ruggedness of

proteins correlates with protein size, although there is a significant correlation

between the two. Also, the ranges of both normalized ruggedness and effective

dimensionality are much smaller than the range of protein sizes we considered.

From this we conclude that evolution adapts both effective dimensionality and

ruggedness of protein free energy landscapes to its respective function. This

also explains why ruggedness serves as a good predictor for protein function as

found in an earlier work [13]. It opens up many new questions concerning the

influence of evolution on these two features of the protein free-energy landscape

that could be addressed in future work.

Taken together, we conclude that the ruggedness and effective dimensionality

of protein free-energy landscapes play an important role for protein function and

are not mere byproducts of the complexity in protein dynamics. This opens

up a new perspective on protein dynamics, where it is usually assumed that

only motions on a specific time-scale, typically slow motions, contribute to the

specific function of a protein. Our work suggests that protein function is rather

governed by the combination of motions on different time and length scales.
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den. Mein Dank gilt im Besonderen meinem Doktorvater Prof. Dr. Helmut

Grubmüller, unter dessen Betreuung diese Arbeit entstanden ist. Ihre Fertig-

stellung konnte nur aufgrund seiner Expertise und dem fortwährenden kreativen

Austausch mit ihm gelingen. Sowohl seine kritischen und gerade deshalb hil-

freichen Anmerkungen als auch seine persönliche Begleitung haben maßgeblich

zum Gelingen dieser Arbeit beigetragen. Der große Freiraum, den er mir in der
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