
GPU fast multipole method with
lambda-dynamics features

Dissertation

for the award of the degree

”Doctor rerum naturalium” (Dr.rer.nat)

of the Georg-August-Universität Göttingen

within the doctoral program PCS

of the Georg August University School of Science (GAUSS)

submitted by

Bartosz Kohnke

from Ko lobrzeg

Göttingen, 2020

Thesis Committee
Prof. Dr. Gert Lube
Prof. Dr. Helmut Grubmüller

Members of the Examination Board
Reviewer: Prof. Dr. Gert Lube
Second Reviewer: Prof. Dr. Helmut Grubmüller
Additional Reviewer: Prof. Dr. Gundolf Haase

Further members of the Examination Board
Prof. Dr. Ramin Yahyapour
Prof. Dr. Christoph Lehrenfeld
Dr. Johannes Söding
Prof. Dr. Marcus Baum

Date of the oral examination: 24.11.2020

Contents

I INTRODUCTION 1

I.1 Approximation techniques . 2

I.2 FMM complexity . 4

I.3 FMM development and parallelization approaches 5

I.4 Parallelization challenges in FMM . 5

I.5 FMM as a PME alternative for electrostatic calculations 7

I.6 Project goals . 7

II PARALLELIZATION AND ACCURACY / PERFORMANCE EVAL-
UATION OF THE FMM FOR GROMACS 9

II.1 GROMEX: A scalable and versatile Fast Multipole Method for biomolec-
ular simulation . 10

II.2 A CUDA Fast Multipole Method with highly efficient M2L far field
evaluation . 41

II.3 A GPU-accelerated Fast Multipole Method for GROMACS: perfor-
mance and accuracy . 87

IIICONCLUSIONS AND OUTLOOK 121

III.1 Accuracy of the CUDA FMM . 121

III.2 Performance of the CUDA FMM . 121

III.3 Parallelization and performance of the λ-FMM 123

III.4 Outlook . 124

I. INTRODUCTION

I Introduction

The n-body problem has been challenging scientists already over three hundred
years. Its special case, the gravitational two-body problem, was solved already in
1687 by Sir Isaac Newton and published in his Principia. However, it took another
two hundred years to find a solution for systems with more than two bodies. In
1885 Gösta Mittag-Leffler arranged an international competition in mathematics in
which the most prominent question read as follows:

“For a system of arbitrarily many mass points that attract each other according
to Newtons law, assuming that no two points ever collide, find a series expansion of
the coordinates of each point in known functions of time converging uniformly for
any period of time.”

After nearly three years of tackling the three-body problem [26], Henri Poincaré
found out that such a system can behave chaotically. It took another 20 years until
Karl Sundman found a definitive solution for n = 3. Finally, in 1991 Wang Qiu-
Dong generalized Sundman’s concept to n bodies [42]. However, this solution has no
practical meaning because of the ”terribly slow” convergence of the resulting series
expansion. For that reason, the n-body problem still has to be solved numerically
by directly calculating forces acting on all particles in discrete time intervals.

The solution of an n-body problem is an essential task in a variety of scientific fields
like astrophysics [41, 2], plasma physics [12], or biomolecular physics [8, 25]. Here,
we consider molecular dynamics (MD) simulations, which meanwhile have become
a routine to study the dynamics of biomolecules, such as proteins, on timescales
inaccessible to experiments. To this aim, MD describes an atomic structure of given
molecules by a system of point charges. The dynamics of the complete system is
then approximated in terms of Newtonian mechanics. To calculate forces acting on
all atoms in the system, the n-body problem is solved. Its result allows to update the
atomic positions by integrating the resulting equations of motion. The integration
is performed numerically with an explicit method, e.g. the Leapfrog algorithm [18].
Repeating this process in discrete time intervals yields atomic trajectories, which
are used to study the molecular behavior. However, to resolve the fastest atomic
vibrations the integration time step has to be in a few femtoseconds range. Because
many biomolecules operate on a millisecond timescale, this implies a very large
number of MD steps to obtain viable atomic trajectories [33, 7, 40].

When considering a single MD step, the overall potential of a given system is
described by the force field [36, 21, 35] that incorporates two parts: a bonded and
a non-bonded part. The bonded part consists of terms characterizing the forces
between covalently bonded atoms. The evaluation of this part requires O(n) steps.
The non-bonded part incorporates Pauli repulsion and van der Waals forces. These
are approximated by the Lennard-Jones potential, which is also calculated within
O(n) steps since it decays rapidly with a growing distance. In addition, the non-
bonded part comprises the Coulomb potential, which describes forces fi = (fx, fy, fz)

1

I.1 APPROXIMATION TECHNIQUES

acting on the i-th particle residing at the position coordinate xi = (xx, xy, xz) with

fi = qi

n−1∑

j=0
j 6=i

qj

‖xi − xj‖22
xi − xj

‖xi − xj‖2
, i = 0, ..., n− 1, (1)

where ‖·‖2 denotes the Euclidean distance and qi is the charge of the i-th particle.
Integrating Eq. 1 yields the electrostatic potential

Φi =
n−1∑

j=0
j 6=i

qj
‖xi − xj‖2

, i = 0, ..., n− 1, (2)

evaluated at the target position xi. The electrostatic energy of the entire system
can then be obtained with

E =
1

2

n−1∑

i=0

Φiqi. (3)

A direct calculation of Eq. 1 or Eq. 2 requires evaluation of all pairs (xi,xj) leading
to O(n2) scaling. This calculation, even on a modern hardware, is only applica-
ble for a moderate number of particles, thus the solution for larger n requires an
approximation technique with a better scaling.

A further challenge arises when the determination of titratable states in particular
atomic groups is required. Such calculations are described by constant-pH [13] or,
more generally, by λ-dynamics algorithms [24, 28, 30]. λ-dynamics introduces a λ
variable, which is treated as an additional degree of freedom in the simulations.
The algorithm also requires the determination of additional energies, which describe
alternative, protonated (A) or deprotonated (B), states of a group. For one group
with two states the Eq. 3 is extended by

E = (1− λ)
1

2

n−1∑

i=0

ΦA
i q

A
i + λ

1

2

n−1∑

i=0

ΦB
i q

B
i , (4)

where 0 < λ < 1. The λ variable couples the alternative energies. Its value is
obtained by evaluating the force acting on a fictive λ particle, which moves along
its own coordinate. The force calculation requires a separate evaluation of each of
the right hand side terms of Eq. 2. When using an approximation technique, its
ability to perform also this calculation efficiently would be beneficial to speed up
λ-dynamics simulations.

I.1 Approximation techniques

One of the simplest schemes to speedup the calculation of the n-body problem
is the cut-off technique [37, 10]. It evaluates pairwise interactions within a limited
distance r < R, where R is a preset cut-off range and r = ‖xi − xj‖2. This improves

2

I. INTRODUCTION

the scaling from O(n2) to O(n). However, the long range nature of the 1/r potential
leads to insufficient accuracy of this approach [39].

To maintain a desired accuracy and to improve the scaling, we need a better ap-
proximation technique. One of the first approaches to approximate Eq. 1 is the
Ewald summation [17], proposed in 1921. It is applied to calculate energies in sys-
tems with periodic boundary conditions (PBC). The method splits the calculation
into two rapidly converging terms: the direct and the reciprocal term. The direct
short-range term is evaluated with the cut-off scheme, whereas the reciprocal long-
range term is modified algebraically to reduce the overall complexity to O(n3/2).
Further enhancements of the Ewald sums led to the particle mesh Ewald (PME)
algorithm [16], which is currently the most prominent method in the MD field. It
enhances the calculation of the reciprocal space Ewald sums by interpolating the
charges on an equally spaced mesh and by evaluating the resulting convolutions us-
ing the fast Fourier transform (FFT), which scales with O(n log n). As the cut-off
part is of order O(n), the PME scaling is O(n log n). The approximation error and
performance of the method is controlled by the cut-off radius size, interpolation
order and the Fourier mesh spacing. The algorithm, by construction, provides a
PBC solution, which is of particular interests for many biomolecular simulations;
however, open boundary simulations are not accessible. The method has been opti-
mized over the last few decades and it achieves remarkable performance allowing to
evaluate forces and energies within milliseconds for system sizes of ≈ 105 on a single
workstation with one graphics processing unit (GPU).

A different approach to approximate Eq. 1 is a multigrid algorithm [9], which
was introduced by Brandt as a solver for elliptical partial differential equations. It
utilizes a hierarchical grid, on which the equation residual is smoothed to remove
high frequency errors. The smoothing employs relaxation methods, which require
only few iterations to sufficiently smooth the residual so that it can be recursively
transferred to more coarser grids to eliminate all error frequencies. The method
scales with O(n) and it is applicable for both periodic and non-periodic systems.
Multigrid can be parallelized efficiently [43], however its use for MD is very limited.
The method shows a very good parallel scaling but, in comparison to PME, its
performance is slightly worse at required accuracy. Furthermore, it exhibits a large
energy drift due to accumulation of different errors [2].

A third group of algorithms to solve the n-body problem are the tree-based meth-
ods. The treecode algorithm [1, 3], proposed by Appel and Barnes and Hut in 1986,
achieves the O(n log n) scaling by approximating the n-body problem by hierarchical
grouping of the distant interactions into single interactions. The method partitions
the 3D space of a simulation cell by recursively subdividing it into eight subboxes.
The subdivision yields an octree, on which the interaction hierarchy is described.
Further improvement of the treecode led to a Fast Multipole Method (FMM) [22],
which scales linearly with respect to the number of particles n. It was proposed by
Greengard and Rokhlin in 1987 and it utilizes spherical harmonics to approximate
the r−1 potential in terms of local moments, which are constructed by applying linear
operators to multipole moments. This transformation has O(p4) complexity, where

3

I.2 FMM COMPLEXITY

p is the expansion order. A precise description of the FMM follows in subsequent
sections.

I.2 FMM complexity

Execution of the FMM algorithm consists of six different stages. The operations
in each stage are performed on data structures and particles contained in octree
boxes. The octree subdivision of the 3D computational domain yields 8D boxes on
the deepest octree level D. The first stage of the algorithm is Particle-to-Multipole
(P2M), which has O(p2) complexity. In P2M, the multipole expansions in each box
on the level D are formed. Hence, since all particles contribute to multipoles on
the lowest level, the overall complexity of this stage is O(np2). Afterwards, the
multipole expansions are formed in all coarser level boxes of the octree. This is
performed by level-wise translating the expansion centers of the multipoles from
finer to coarser tree levels. The operation is called Multipole-to-Multipole (M2M).
It has O(p4) complexity and it does not directly depend on n. However, the proper
choice of D depends on n. There are

D∑

d=0

8d = b8
D+1

7
c = b8

7
8Dc (5)

boxes in the octree. It can be assumed that 8D ≤ n, thus O(8D) ∈ O(n). Hence, the
overall complexity of the M2M stage is 8/7 · O(np4). Subsequently, the multipole
expansions are transformed into local expansions within a stage called Multipole-
to-Local (M2L). A single M2L transformation has also O(p4) complexity and it is
performed 189 times for each box in the octree. Therefore, the overall complexity
of the M2L stage is 8/7 · 189 · O(np4). In the last O(p4) operation (Local-to-Local),
the local expansions are translated from the root to the leaves of the octree. This
translation is performed once for each box in the octree, hence, it has 8/7 · O(np4)
overall complexity. The evaluation of the potential is performed for each particle and
requires O(p2) operations on local moments. This yields O(np2) overall complexity
of this stage. Additionally, the direct particle interaction stage (P2P) has 27 · O(n)
complexity as the calculations are performed only between adjacent boxes on the
lowest level D.

Summing the scaling of all FMM stages yields

8

7
191O(np4) + 2O(np2) + 27O(n) (6)

overall scaling of the method. As p is treated as a constant parameter, which is set
to achieve a desired accuracy, Eq. 6 simplifies to

≈ 247O(n). (7)

4

I. INTRODUCTION

I.3 FMM development and parallelization approaches

The originally proposed FMM [22] utilizes O(p4) far-field operators. As these
operators are the main bottleneck of the algorithm, further approaches to reduce
their complexity were developed. The rotational operators [45], which align the z-
axis of the transformation were proposed. They reduce the operator complexity to
O(p3); however, they introduce an additionalO(p3) operation to rotate the moments.
After rotating, the original O(p4) transformation reduces to a O(p3) transformation
as the rotation preserves the azimuthal symmetry of the multipoles along the z-axis.
However, the tetrahedron-like shape of the rotational data structure hinders its
efficient parallel implementation. The grid-based approach [4] improves the scaling
of the operator even further to O(p2) but it has a large memory requirement and
provides no analytic error bounds. A O(p2 log p) operator, which utilizes FFTs has
been proposed but it also has a limiting memory requirement [15]. Further operator
enhancements [11] utilize plain-wave expansions to reduce the complexity of a part
of the operators to O(p2). This approach additionally requires six different O(p3)
operators to transform multipoles to their plane-wave representation.

A different approach to enhance the performance of the FMM is to employ struc-
ture adaptive methods [38, 14]. In contrast to enhancing the operator performance,
they require much lower p to achieve a desired accuracy. This improvement is
possible by exploiting space decompositions that take into account a structural in-
formation of the underlying system of particles.

Furthermore, different parameterizations of the r−1 function have been considered.
The ”black-box FMM” [19] utilizes Chebyshev polynomials, which use a minimal
number of coefficients that describe the system potential. Further method develop-
ments led to a more general formulation [46], which also supports oscillatory kernels
eikr/r that can not be described by spherical harmonics.

Early GPU FMM implementation [23] utilizing O(p3) operators achieved speedups
of up to 70 when compared to a serial implementation. One of the latest GPU
implementation [20] utilizes GPU concurrent streams to optimize the executions of
the O(p3) M2L operator on a single GPU. The black-box FMM was also parallelized
efficiently on GPUs [44]. MPI based implementations [48, 47] on clusters with on-
node GPUs achieved efficiencies of up to 66% for systems with 107 particles. Very
large multi-node, multi-GPU parallelization with more then 256 GPUs followed [34].
Also task based parallelization approaches of the FMM were undertaken [5].

I.4 Parallelization challenges in FMM

With the rise of modern multi-core, multi-node architectures, where each node
can additionally contain several GPUs as computational accelerators, an optimal
parallelization has become a tedious task as it requires to study a variety of different
hardware bottlenecks. Additionally, tasks performed by various algorithmic parts

5

I.4 PARALLELIZATION CHALLENGES IN FMM

typically exhibit a different amount of fine-grained parallelism. This also complicates
an efficient single GPU parallelization, because GPUs provide only limited task
synchronization tools. When targeting an order of millisecond wall time for a one
time step, as required in MD simulations, latency hiding and synchronization become
the main bottlenecks in the implementation.

When considering an efficient MD parallelization, an additional challenge is posed
by the scaling property of MD simulations. In contrast to many other fields, e.g.
weather forecasting or fluid dynamics in which weak scaling is sufficient to achieve
more accurate results for a given system, MD simulations require strong scaling
as the atomic description and the operational timescales of biomolecules are fixed.
Including an additional quantum information or using more sophisticated sampling
techniques still requires long trajectories. Hence, minimizing the execution time
needed for one MD step, in which the n-body calculation is by far the most limiting
factor, is crucial to enhance the overall performance.

The FMM applies a sequence of operators to transform an input of the particle
positions into an output of the forces acting on them. The direct calculation part
of the FMM, which performs Eq. 1 on a subset of all particles, is a compute-bound,
single instruction multiple data (SIMD) task. This task is especially suited for
GPUs, which excellently combine the SIMD execution concept with multithread-
ing, referring to it as a single instruction, multiple threads (SIMT). Hence, a GPU
implemented direct calculation part of the FMM clearly outperforms even highly
optimized SIMD parallelized CPU versions.

The execution order of the far-field operators is inherently sequential but most of
the operators provide a large amount of parallelism, which can be divided into two
groups: tree and operator parallelism. The tree parallelism exposed by the method
enables very efficient large-scale parallelization as it contains a great number of inde-
pendent operations with limited communication. Considering operator parallelism,
the level of parallelism varies strongly depending on a particular operator. A few
of the operators are recursively formulated what limits their amenity for efficient
GPU parallelization. The most performance limiting far-field operation, multipole-
to-local (M2L), provides a lot of tree parallelism with negligible communication
requirement. This property leads to a large number of independent operations that
can be distributed efficiently on heterogeneous hardware. It can also be exploited for
a very good single GPU performance. However, harnessing the operator parallelism
requires involved parallelization to achieve an efficient work-load distribution on a
single GPU. This is caused by the highly non-uniform data access required for the
M2L calculation. Additionally, the operations preformed on these data structures
are not part of any highly optimized existing library.

6

I. INTRODUCTION

I.5 FMM as a PME alternative for electrostatic calculations

The main drawback of the prevailing PME method is its limitation to massive
parallelization because the underlying FFTs require all-to-all communication. For p
processes, sending of O(p2) messages is required. Such communication overhead is
only negligible for a moderate parallelization [6, 32, 31]. Additionally, the memory
demand for storing the Fourier mesh increases with growing simulation box size.
This property prevents PME to treat very large number of particles or smaller
systems with sparsely or not uniformly distributed particles especially on a single
computational node. Moreover, PME can not provide an open boundary solution,
as the underlying formalism allows only periodic calculations.

The FMM does not suffer from these drawbacks of the PME. The octree structure
of the FMM is expected to allow for a very efficient exascale parallelization since
the communication required by the method decreases with a distance of interacting
particles. Clearly, as the problem sizes are mostly fixed, strong scaling is required to
provide long trajectories. Additionally, a single-node FMM implementation requires
less memory than PME. The FMM also provides the possibility to compute a open
boundary solution or partly periodic solution where the periodicity is taken into
account only along a chosen coordinate axis.

Another advantage of the FMM originates from the flexibility of the octree. FMM
is able to efficiently calculate alternative energies emerging from different states in
λ-dynamics formulation. Such calculation is not trivial with PME, as, to get the
required energy for each state, one separate mesh evaluation is needed. Such re-
evaluation introduces a substantial runtime overhead, because it requires a separate
run of the globally defined FFT. A slightly different approach to utilize PME for
the calculation of alternative energies was proposed by Berk Hess with a charge
scaling method (internal communication). In contrast to λ-dynamics, which uses
λ values to scale hamiltonians of the system, the method directly scales charges of
the titratable groups. This leads to a different dynamics of the λ particle but it can
be easily implemented with PME. However, for a strict λ-dynamics implementation
FMM is advantageous as it is able to compute additional alternative energies with
negligible costs by introducing multiple sparse octrees interacting with each other.
As the energies emerge mostly due to local changes in particle distribution, most
re-calculations are performed only locally on the deepest level of the octrees. The
FMM is expected to perform very fast, since the alternative states are typically
described by a few particles only.

I.6 Project goals

The main goal of the project is to efficiently implement the spherical harmonics
based FMM algorithm for a GPU utilization, to determine the FMM parameters
yielding sufficient accuracy for MD simulations, and to evaluate accuracy and per-
formance of the method. Further, bottlenecks of different FMM stages will be

7

I.6 PROJECT GOALS

investigated to assess their amenity for a future heterogeneous parallelization so
that the method can be then used as an alternative electrostatic solver in the MD
software package GROMACS [27] on exascale systems. Additionally, the FMM will
be enhanced to allow for an efficient execution of the λ-dynamics algorithm.

8

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

II Parallelization and accuracy / performance eval-

uation of the FMM for GROMACS

Here, we describe our MD optimized CUDA implementation of the FMM. The
first section will specify further challenges of heterogeneous parallelization of the
FMM, will give an overview of the entire FMM CUDA parallelization process and
will show the first scalings and timings. Additionally, the first results of an efficient
CUDA-FMM usage for λ-dynamics framework will be reported.

The second subsection will describe the CUDA parallelization of the M2L oper-
ator, which is a most performance limiting far-field operator in the FMM. It will
illustrate three different parallelization strategies; from a very simple rapid CUDA
parallelization approach to a most advanced, symmetry exploiting approach.

The third section will evaluate the performance of the MD software package GRO-
MACS executed with CUDA-FMM electrostatics. This section will also establish
adequate FMM parameter to achieve the desired accuracy by comparing FMM and
PME errors for various computational scenarios.

9

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

II.1 GROMEX: A scalable and versatile Fast Multipole Method
for biomolecular simulation

In this work, I provided an overview of the CUDA GPU parallelization process
and I showed first preliminary results of the GPU FMM performance. To this
aim, I wrote the Section 3.4, which briefly describes the FMM operators and their
GPU parallelization, and Additionally, in Section 3.5 I presented first results of
the λ-dynamics FMM implementation. Finally, I wrote the corresponding part of
the Conclusions and Outlook. The entire content of the paper was subsequently
edited by Prof. Dr. Gert Lube and by Prof. Dr. Helmut Grubmüller. The pa-
per has been published in Software for Exascale Computing - SPPEXA 2016–2019
[29].

10

GROMEX: A scalable and versatile
Fast Multipole Method for

biomolecular simulation

Bartosz Kohnke1, Thomas R. Ullmann1, Andreas Beckmann2, Ivo
Kabadshow2, David Haensel2, Laura Morgenstern2, Plamen Dobrev1,

Gerrit Groenhof3, Carsten Kutzner1, Berk Hess4, Holger Dachsel2,
and Helmut Grubmüller1

1Max Planck Institute for Biophysical Chemistry, Theoretical and Computational
Biophysics, Am Faßberg 11, 37077 Göttingen

2Jülich Supercomputing Centre, Forschungszentrum Jülich, Wilhelm Johnen Straße 1,
52428 Jülich

3Nanoscience Center, Department of Chemistry, University of Jyväskylä, P.O. Box 35,
40014 Jyväskylä, Finland

4Department of Physics, Swedish e-Science Research Center, KTH Royal Institute of
Technology, Stockholm, Sweden

Atomistic simulations of large biomolecular systems with chemical
variability such as constant pH dynamic protonation offer multi-
ple challenges in high performance computing. One of them is the
correct treatment of the involved electrostatics in an efficient and
highly scalable way. Here we review and assess two of the main
building blocks that will permit such simulations: (i) An electro-
statics library based on the Fast Multipole Method (FMM) that
treats local alternative charge distributions with minimal overhead,
and (ii) A λ-dynamics module working in tandem with the FMM
that enables various types of chemical transitions during the simu-
lation. Our λ-dynamics and FMM implementations do not rely on
third-party libraries but are exclusively using C++ language fea-
tures and they are tailored to the specific requirements of molec-
ular dynamics simulation suites such as GROMACS. The FMM
library supports fractional tree depths and allows for rigorous error
control and automatic performance optimization at runtime. Near-
optimal performance is achieved on various SIMD architectures and
on GPUs using CUDA. For exascale systems, we expect our ap-
proach to outperform current implementations based on Particle
Mesh Ewald (PME) electrostatics, because FMM avoids the com-
munication bottlenecks caused by the parallel fast Fourier transfor-
mations needed for PME.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

11

1 Introduction

The majority of cellular function is carried out by biological nanomachines made
of proteins. Ranging from transporters to enzymes, from motor to signalling pro-
teins, conformational transitions are frequently at the core of protein function, which
renders the detailed understanding of the involved dynamics indispensable. Exper-
imentally, atomistic dynamics on submillisecond timescales are notoriously difficult
to access, making computer simulations the method of choice. Molecular dynamics
(MD) simulations of biomolecular systems are nowadays routinely used to study the
mechanisms underlying biological function in atomic detail. Examples reach from
membrane channels [28], microtubules [20], and whole ribosomes [4] to subcellular
organelles [43]. Recently, the first MD simulation of an entire gene was reported,
comprising about a billion of atoms [21].

Apart from system size, the scope of such simulations is limited by model accuracy
and simulation length. Particularly the accurate treatment of electrostatic interac-
tions is essential to properly describe a biomolecule’s functional motions. However,
these interactions are numerically challenging for two reasons.

First, their long-range character (the potential drops off slowly with r−1 with
distance r) renders traditional cut-off schemes prone to artifacts, such that grid-
based Ewald summation methods were introduced to provide an accurate solution
in 3D periodic boundaries. The current standard is the Particle Mesh Ewald (PME)
method that makes use of fast Fourier transforms (FFTs) and scales as N · logN
with the number of charges N [11]. However, when parallelizing PME over many
compute nodes, the algorithm’s communication requirements become more limiting
than the scaling with respect to N . Because of the involved FFTs, parallel PME
requires multiple all-to-all communication steps per time step, in which the number
of messages sent between p processes scales with p2 [29]. For the PME algorithm
included in the highly efficient, open source MD package GROMACS [42], much
effort has been made to reduce as much as possible the all-to-all bottleneck, e.g. by
partitioning the parallel computer in long-range and short-range processors, which
reduces the number of messages involved in all-to-all communication [17]. Despite
these efforts, however, even for multimillion atom MD systems on modern hardware,
performance levels off beyond several thousand cores due to the inherent paralleliza-
tion limitations of PME [45, 42, 30].

The second challenge is the tight and non-local coupling between the electro-
static potential and the location of charges on the protein, in particular titrat-
able/protonatable groups that adapt their total charge and potentially also their
charge distribution to their current electrostatic environment. Hence, all proto-
nation states are closely coupled, depend on pH, and therefore the protonation
/ deprotonation dynamics needs to be taken into account during the simulation.
Whereas most MD simulations employ fixed protonation states for each titratable
group, several dynamical schemes have been introduced [37, 33, 23, 8, 13, 14] that
use a protonation coordinate λ to distinguish the protonated from the deproto-

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

12

nated state. Here, we follow and expand the λ-dynamics approach of Brooks et
al. [27] and treat λ as an additional degree of freedom in the Hamiltonian with
mass mλ. Each protonatable group is associated with its own λ “particle” that
adopts continuous values in the interval [0, 1], where the end points around λ = 0
and λ = 1 correspond to the physical protonated or deprotonated states. A bar-
rier potential with its maximum at λ ≈ 0.5 serves two purposes. (i) It reduces
the time spent in unphysical states, and (ii) it allows to tune for optimal sampling
of the λ coordinate by adjusting its height [8, 9]. Current λ-dynamics simulations
with GROMACS are however limited to small system sizes with a small number nλ
of protonatable groups [8, 7, 9], as the existing, PME-based implementation (see
www.mpibpc.mpg.de/grubmueller/constpH) needs an extra PME mesh evaluation
per λ group and suffers from the PME parallelization problem. While these extra
PME evaluations can be overcome for the case where only the charges differ between
the states, for the most general case of chemical alterations this is not possible.

Without the PME parallelization limitations, a significantly higher number of
compute nodes could be utilized, so that both larger and more realistic biomolec-
ular systems would become accessible. The Fast Multipole Method [15] (FMM) is
a method that by construction parallelizes much better than PME. Beyond that,
the FMM can compute and communicate the additional multipole expansions that
are required for the local charge alternatives of λ groups with far less overhead as
compared to the PME case. This makes the communicated volume (extra multipole
components) somewhat larger, but no global communication steps are involved as in
PME, where the global communication volume grows linearly with nλ and quadratic
with p. We also considered other methods that, like FMM, scale linearly with the
number of charges, as e.g. multigrid methods. We decided in favor of FMM, because
it showed better energy conservation and higher performance in a comparison study
[2].

We will now introduce λ-dynamics methods and related work to motivate the
special requirements they have on the electrostatics solver. Then follows an overview
of our FMM-based solver and the design decisions reflecting the specific needs of MD
simulation. We will describe several of the algorithmical and hardware-exploiting
features of the implementation such as error control, automatic performance tuning,
the lightweight tasking engine, and the CUDA-based GPU implementation.

2 Chemical variability and protonation dynamics

Classical MD simulations employ a Hamiltonian H that includes potential terms
modeling the bonded interactions between pairs of atoms, the bond angle inter-
actions between bonded atoms, and the van der Waals and Coulomb interactions
between all pairs of atoms. For conventional, force field based MD simulations, the
chemistry of molecules is fixed during a simulation because chemical changes are not
described by established biomolecular force fields. Exceptions are alchemical trans-

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

13

formations [47, 36, 46, 38], where the system is either driven from a state A described
by Hamiltonian HA to a slightly different state B (with HB) via a λ parameter that
increases linearly with time, or where A/B chimeric states are simulated at several
fixed λ values between λ = 0 and λ = 1, as e.g. in thermodynamic integration [24].
The A → B transition is described by a combined, λ-dependent Hamiltonian

HAB(λ) = (1− λ)HA + λHB. (1)

In these simulations, which usually aim at determining the free energy difference
between the A and B states, the value of λ is an input parameter.

In contrast, with λ-dynamics [27, 25, 16], the λ parameter is treated as an addi-
tional degree of freedom with mass m, whose 1D coordinate λ and velocity λ̇ evolve
dynamically during the simulation. Whereas in a normal MD simulation all pro-
tonation states are fixed, with λ-dynamics, the pH value is fixed instead and the
protonation state of a titratable group changes back and forth during the simulation
in response to its local electrostatic environment [39, 23]. If two states (or forms)
A and B are involved in the chemical transition, the corresponding Hamiltonian
expands to

H(λ) = (1− λ)HA + λHB +
m

2λ̇2
+ Vbias(λ) (2)

with a bias potential Vbias that is calibrated to reflect the (experimentally deter-
mined) free energy difference between the A and B states and that optionally con-
trols other properties relating to the A � B transitions [8]. With the potential
energy part V of the Hamiltonian, the force acting on the λ particle is

fλ = −∂V
∂λ

. (3)

If coupled to the protonated and deprotonated form of an amino acid side chain,
e.g., λ-dynamics enables dynamic protonation and deprotonation of this side chain
in the simulation (see Fig. 1 for an example), accurately reacting to the electrostatic
environment of the side chain. More generally, also alchemical transformations be-
yond protons are possible, as well as transformations involving more than just two
forms A and B. Equation 2 shows the Hamiltonian for the simplest case of a single
protonatable group with two forms A and B, but we have extended the framework to
multiple protonatable groups using one λi parameter for each chemical form [8, 9, 7].

2.1 Variants of λ-dynamics and the bias potential

The key aim of λ-dynamics methods is to allow for dynamic protonation, but there
are three areas in which the implementations differ from each other. These are the
coordinate system used for λ, the type of the applied bias potential, and how λ is
coupled to the alchemical transition. Before we discuss the different choices, let us
define two terms used in the context of chemical variability and protonation. We

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

14

protein

+

-

??

water

titratable group

-

water

Figure 1: Simplified sketch of a protein (right, grey) in solution (blue) with several
protonatable sites (ball-and-stick representations) of which a histidine (top
left) and a carboxyl group (bottom left) are highlighted. The histidine
site contains four forms (two neutral, two charged), whereas the carboxyl
group contains three forms (two neutral, one negatively charged). In λ-
dynamics, the lambdas controls how much of each form is contributing
to a site. Atom color coding: carbons-black, hydrogens/protons-white,
oxygens-red, nitrogens-blue.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

15

Table 1: Three variants of λ-dynamics are considered.

dynamical
variant name variable geometric picture

linear [9] λ λ lives on a constricted linear interval, e.g. [0,1]
hypersphere [8] θ λ lives on a circle
Brooks’ Nexp [26] ϑ no simple geometric interpretation

use the term site for a part of a molecule that can interconvert between two or
more chemically different states, e.g. the protonated and deprotonated forms of an
aminoacid. Additionally, we call each of the chemically different states of a site a
form. For instance, a protonatable group is a site with at least two forms A and B,
a protonated form A and a deprotonated form B.

The coordinate system for λ

Based on the coordinate system in which λ lives (or on the dynamical variables
used to express λ), we consider three variants of λ-dynamics listed in Tab. 1. The
linear variant is conceptually most straightforward, but it definitely needs a bias
potential to constrain λ to the interval [0..1]. The circular coordinate system for
λ used in the hypersphere variant automatically constrains the range of λ values
to the desired interval, however one needs to properly correct for the associated
circle entropy [8]. The Nexp variant implicitly fulfils the constraints on the Nforms

individual lambdas (Equation 4) for sites that are allowed to transition between
Nforms different forms (Nforms = 2 in the case of simple protonation), such that no
additional constraint solver for the λi is needed.

The bias potential

The bias potential Vbias(λ) that acts on λ fulfils one or more of the following tasks.

1. If needed, it limits the accessible values of λ to the interval [0..1], whereas
slight fluctuations outside that interval may be desirable (Fig. 2A).

2. It cancels out any unwanted barrier at intermediate λ values (B)

3. It takes care that the resulting λ values cluster around 0 or 1, suppressing
values between about 0.2 and 0.8 (C)

4. It regulates the depth and width of the minima at 0 and 1, such that the
resulting λ distribution fits the experimental free energy difference between
protonated and deprotonated form (C+D).

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

16

0.0 0.5 1.0

0

bi
as

 p
ot

en
tia

l

A

0.0 0.5 1.0

0
B

0.0 0.5 1.0

0

bi
as

 p
ot

en
tia

l

C

0.0 0.5 1.0

0
D

Figure 2: Qualitative sketches of individual bias potentials (black) that fulfil some
of the requirements (i)–(v), and resulting equilibrium distributions of λ
values (green).

5. It allows to tune for optimal sampling of the λ space by adjusting the barrier
height at λ = 0.5 (C)

Taken together, the various contributions to the barrier potential might look like
the example given in Fig. 3 for a particular λ in a simulation.

How λ controls the transition between states

The λ parameter can either be coupled to the transition itself between two forms
(as in [8, 9]), then λ = 0 corresponds to form A and λ = 1 to form B. Alternatively,
each form gets assigned its own λα with α ∈ {A,B} as weight parameter. In the
latter case one needs extra constraints on the weights similar to

∑
λα = 1, 0 ≤ λα ≤ 1, (4)

such that only one of the physical forms A or B is fully present at a time. For the
examples mentioned so far, with just two forms, both approaches are equivalent and
one would rather choose the first one, because it involves only one λ and needs no
extra constraints.

If, however, a site can adopt more than two chemically different forms, the weight
approach can become more convenient as it allows to treat sites with any number
Nforms of forms (using a number of Nforms independent λ parameters). Further, it
does not require that the number of forms is a power of two (Nforms = 2Nλ) as in
the transition approach.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

17

0.00 0.25 0.50 0.75 1.00
0

bi
as

 p
ot

en
tia

l

Figure 3: Qualitative sketch of a bias potential (black) that fulfils all requirements
(i)–(v) with resulting equilibrium distribution of λ values (green).

2.2 Keeping the system neutral with buffer sites

In periodic boundary conditions as typically used in MD simulations, the elec-
trostatic energy is only defined for systems with a zero net charge. Therefore, if
the charge of the MD system changes due to λ mediated (de)protonation events,
system neutrality has to be preserved. With PME, any net charge can be artificially
removed by setting the respective Fourier mode’s coefficient to zero, so that also
in these cases a value for the electrostatic energy can be computed. However, it is
merely the energy of a similar system with a neutralizing background charge added.
Severe simulation artifacts have been reported as side effects of this approach [19].

As an alternative, a charge buffer can be used that balances the net charge of the
simulation system arising from fluctuating charge of the protonatable sites [48, 9].
A reduced number of nbuffer buffer sites, each with a fractional charge |q| ≤ 1e (e.g.
via H2O � H3O+), was found to be sufficient to neutralize the Nsites protonatable
groups of a protein with nbuffer � Nsites. The total charge of these buffer ions is
coupled to the system’s net charge with a holonomic constraint [9]. The buffer sites
should be placed sufficiently far from each other, such that their direct electrostatic
interaction through the shielding solvent is negligible.

3 A modern FMM implementation in C++ tailored
to MD simulation

High performance computing (HPC) biomolecular simulations differ from other
scientific applications by their comparatively small particle numbers and by their
extremely high iteration rates. With GROMACS, when approaching the scaling
limit, the number of particles per CPU core typically lies in the order of a few
hundred, whereas the wall-clock time required for computing one time step lies in

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

18

the range of a millisecond or less [42]. In MD simulations with λ-dynamics, the
additional challenge arises to calculate the energy and forces from a Hamiltonian
similar to Equation 2, but for N protonatable sites, in an efficient way. In addition
to the Coulomb forces on the regular charged particles, the electrostatic solver has
to compute the forces on the N λ particles as well [8] via

fλi = −∂VC
∂λi

= −∂VC(λ1, . . . , λi−1, λi, λi+1, . . . λN)

∂λi

= −
[
VC(λ1, . . . , λi−1, λi = 1, λi+1, . . . λN)

−VC(λ1, . . . , λi−1, λi = 0, λi+1, . . . λN)
]

(5)

Accordingly, with λ-dynamics, for each of the λi’s, the energies of the pure (i.e.,
λi = 0 and λi = 1) states have to be evaluated while keeping all other lambdas at
their actual fractional values.

The aforementioned requirements of biomolecular electrostatics have driven sev-
eral design decisions in our C++ FMM, which is a completely new C++ reim-
plementation of the Fortran ScaFaCoS FMM [5]. Although several other FMM
implementations exist [50, 1], none of them is prepared to compute the potential
terms needed for biomolecular simulations with λ-dynamics.

Although our FMM is tailored for usage with GROMACS, it can be used as an
electrostatics solver for other applications as well as it comes as a separate library
in a distinct Git repository. On the GROMACS side we provide the necessary mod-
ifications such that FMM instead of PME can be chosen at run time. Apart from
that, GROMACS calls our FMM library via an interface that can also be used by
other codes. The development of this library follows three principles. First, the
building blocks (i.e., data structures) used in the FMM support each level of the
hierarchical parallelism available on today’s hardware. Second, the library provides
different implementations of the involved FMM operators depending on the under-
lying hardware. Third, the library optionally supports λ-dynamics via an additional
interface.

3.1 The FMM in a nutshell

The FMM approximates and thereby speeds up the computation of the Coulomb
potential VC for a system of N charges:

VC ∝
N∑

i

∑

j<i

qiqj
|ri − rj|

(6)

For that purpose, the FMM divides the simulation box into eight smaller boxes
(depth d = 1), which are subsequently subdivided into eight smaller boxes again

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

19

Input P2M M2M M2L L2L L2P P2P Out

synchronization
points

Figure 4: The classical (sequential) FMM workflow consists of six stages. Only
the nearfield (P2P) can be computed completely independent of all other
stages. Each farfield stage (P2M, M2M, etc.) depends on the former stage
and exhibits different amounts of parallelism. Especially the distribution
of multipole and local moments in the tree provide limited parallelism in
classical loop-based parallelization schemes.

(d = 2) and again (d = 3, 4, . . .). The depth d refers to the number of subdivi-
sions. On the lowermost level, i.e. for the smallest boxes (largest d), all interactions
between neighboring boxes are directly calculated (these are called the near-field in-
teractions). Interactions with boxes further away are approximated by a multipole
expansion of order p (these are called the far-field interactions). A comprehensive
description of the FMM algorithm is beyond the scope of this text, however we will
shortly describe the basic workflow and the different operators used in the six FMM
stages as these will be referred to in the following sections. For a detailed overview
of the FMM, see [22]; for an introduction in our C++ FMM implementation see [12].

FMM workflow

The FMM algorithm consists of six different stages, five of them required for
the farfield (FF) and one for the nearfield (NF) (Fig. 4). After setting up the
FMM parameters tree depth (d) and multipole order (p), the following workflow is
executed.

1. P2M: Expand particles into spherical multipole moments ωlm up to order p on
the lowest level for each box in the FMM tree. Multipole moments for particles
in the same box can be summed into a multipole expansion representing the
whole box.

2. M2M: Translate the multipole expansion of each box to its parent box inside
the tree. Again, multipole expansions with the same box center can be summed
up. The translation up the tree is repeated until the root node is reached.

3. M2L: Transform remote multipole moments ωlm into local moments µlm for
each box on every level. Only a limited number of interactions for each box
on each level is performed to achieve linear scaling.

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

20

4. L2L: Translate local moments µlm starting from the root node down towards
the leaf nodes. Local moments within the same box are summed.

5. L2P: After reaching the leaf nodes, the farfield contributions for the potentials
ΦFF, forces FFF, and energy EFF are computed.

6. P2P: Interactions between particles within each box and its direct neighbors
are computed directly, resulting in the nearfield contributions for the potentials
ΦNF, forces FNF, and energy ENF.

Features of our FMM implementation

Our FMM implementation includes special algorithmical features and features
that help to optimally exploit the underlying hardware. Algorithmical features are

• Support for open and 1D, 2D and 3D periodic boundary conditions for cubic
boxes.

• Support for λ-dynamics (Sec. 2).

• Communication-avoiding algorithms for internode communication via MPI
(Fig. 9).

• Automatic tuning of FMM parameters d and p to provide automatic error
control and runtime minimization [6] based on a user-provided energy error
threshold ∆E (Fig. 10).

• Adjustable tuning to reduce or avoid energy drift (Fig. 11).

Hardware features include

• A performance-portable SIMD layer (Sec. 3.2.1).

• A light-weight, NUMA-aware task scheduler for CPU and GPU tasks (Sec. 3.2.2).

• A GPU implementation based on CUDA (Sec. 3.4).

3.2 Utilizing hierarchical parallelism

3.2.1 Intra-core parallelism

A large fraction of today’s HPC peak performance stems from the increasing
width of SIMD vector units. However, even modern compilers cannot generate fully
vectorized code unless the data structures and dependencies are very simple. Generic
algorithms like FFTs or basic linear algebra can be accelerated by using third-

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

21

party libraries and tools specifically tuned and optimized for a multitude of different
hardware configurations. Unfortunately, the FMM data structures are not trivially
vectorizable and require careful design. Therefore, we developed a performance-
portable SIMD layer for non-standard data structures and dependencies in C++.

Using only C++11 language features without third-party libraries allows to fine-
tune the abstraction layer for the non-trivial data structures and achieve a better
utilization. Compile-time loop-unrolling and tunable stacking are used to increase
out-of-order execution and instruction-level parallelism. Such optimizations depend
heavily on the targeted hardware and must not be part of the algorithmic layer of
the code. Therefore, the SIMD layer serves as an abstraction layer that hides such
hardware-specifics and that helps to increase code readability and maintainability.
The requested SIMD width (1x, 2x, . . . , 16x) and type (float, double) is selected
at compile time. The overhead costs and performance results are shown in Fig. 5.
The baseline plot (blue) shows the costs of the M2L operation (float) without any
vectorization enabled. All other plots show the costs of the M2L operation (float)
and 16-fold vectorization (AVX-512). Since the runtime of the M2L operation is
limited by the loads of the M2L operator, we try to amortize these costs by utilizing
multiple (2× . . . 6×) SIMDized multipole coefficient matrices together with a single
operator via unrolling (stacking). As can be seen in Fig. 5, unrolling the multi-
pole coefficient matrices 2× (red), we reach the minimal computation time and the
expected 16-fold speedup. Additional unroll factors (3× . . . 6×) will not improve
performance due to register spilling. To reach optimal performance, it is required
to reuse (cache) the M2L operator for around 300 (or more) of these steps.

3.2.2 Intra-node and inter-node parallelism

To overcome scaling bottlenecks of a pragma-based loop-level parallelization (see
Fig. 4), our FMM employs a lightweight tasking framework purely based on C++.
Being independent of other third-party tasking libraries and compiler extensions
allows to utilize resources better, since algorithm-specific behavior and data-flow
can be taken into account. Two distinct design features are a type-driven priority
scheduler and a static dataflow dispatcher. The scheduler is capable of prioritizing
tasks depending on their type at compile time. Hence, it is possible to priori-
tize vertical operations (like M2M and L2L) in the tree. This reduces the runtime
twofold. First, it reduces the scheduling overhead at runtime by avoiding costly
virtual function calls. Second, since the execution of the critical path is prioritized,
the scheduler ensures that a sufficient amount of independent parallelism gets gen-
erated. The dataflow dispatcher defines the dependencies between tasks – a data
flow graph – also at compile time (see Fig. 6). Together with loadbalancing and
workstealing strategies, even a non-trivial FMM data flow can be executed. For
compute-bound problems this design shows virtually no overhead. However, in MD
we are interested in smaller particle systems with only a few hundred particles per
compute node. Hence, we have to take even more hardware constraints into account.
Performance penalties due to the memory hierarchy (NUMA) and costs to access

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

22

100 200 300 400 500 600 700 800 900

10−6

10−5

of operations

ru
nt

im
e

(s

 /
 o

p
er

at
io

n)

baseline
1.00

16.07×

SIMD stacking 16x1
SIMD stacking 16x2
SIMD stacking 16x3

SIMD stacking 16x4
SIMD stacking 16x5
SIMD stacking 16x6

4x1 SIMD
stacking

SIMD SIMD

Figure 5: M2L operation benchmark for vectorized data structures with multipole
order p = 10 on an Intel Xeon Phi 7250F CPU for a float type with 16x
SIMD (AVX-512). The benchmarks shows the performance of different
SIMD/unrolling combinations. E.g. the red curve (SIMD stacking 16× 2)
utilizes 16-fold vectorization together with 2-fold unrolling. For a sufficient
number(around 300) of vectorized operations, a 16-fold improvement can
be measured for the re-designed data structures.

P2M M2M M2L L2L L2P

P2P

x, q

x, q

ω

ω

ω

ω µ

µ

µ

µ F, φ

F, φ

Figure 6: The data flow of the FMM still consists of six stages. However, synchro-
nization now happens on a fine-grained level and not only after each full
stage is completed. This allows to overlap parts that exhibit poor paral-
lelization with parts that show a high degree of parallel code. The depen-
dencies of such a data flow graph can be evaluated and even prioritized at
compile time.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

23

[Draft] • Branch: master@a118cd7

Author: Carl-Martin Pfeiler, 2017-11-18 04:15:55 +0100

1 2 4 8 16 26 32 52

1

2

4

8

SMT

#Threads

R
u
n
ti
m
e
[m

s]

Original
std::mutex

MCS Lock

Figure 7: Intranode FMM benchmark for 1,000 particles, multipole order p = 1 and
tree depth d = 3 on a 2x26-core Intel Xeon Platinum 8170 CPU. When
using MCS locks, simultaneous multithreading and 50 threads, the overall
improvement compared to the original implementation reaches > 40%,
translating into a reduction in runtime from 1.93 ms down to 1.14 ms.

memory in a shared fashion via locks introduce additional overhead. Therefore,
we extended also our tasking framework with NUMA-aware memory allocations,
workstealing and scalable Mellor-Crummey Scott (MCS) locks [35] to enhance the
parallel scalability over many threads, as shown in Fig. 7.

In the future, we will extend our tasking framework so that tasks can also be
offloaded to local accelerators like GPUs, if available on the node.

For the node-to-node communication via MPI the aforementioned concepts do
not work well (see Fig. 8), since loadbalancing or workstealing would create large
overheads due to a large amount of small messages. To avoid or reduce the latency
that comes with each message, we employ a communication-avoiding parallelization
scheme [10]. Nodes do not communicate separately with each other, but form groups
in order to reduce the total number of messages. At the same time the message size
can be increased. Depending on the total number of nodes involved, the group size
parameter can be tuned for performance (see Fig. 9).

3.3 Algorithmic interface

Choosing the optimal FMM parameters in terms of accuracy and performance
is difficult if not impossible to do manually as they also depend on the charge
distribution itself. A naive choice of tree depth d and multipole order p might either
lead to wasting FLOPs or to results that are not accurate enough. Therefore, d and
p are automatically tuned depending on the underlying hardware and on a provided
energy tolerance ∆E (absolute or relative acceptable error in Coulombic energy).
The corresponding parameter set {d, p} is computed such that the accuracy is met

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

24

1 2 4 8 16 32 64 128 25610−2

10−1

100

101

#Nodes (1 MPI Rank per Node)

R
un

tim
e

in
s

Ideal
FMSolvr+MPI

Figure 8: Initial internode FMM benchmark for 1,000,000 particles, multipole order
p = 3 and tree depth d = 5 with one MPI rank per compute node of the
JURECA cluster.

4 8 12 16 20 24 28
90%

95%

100%

number of threads

pa
ra
lle
le

�
ci
en

cy

pThreads, scalar
pThreads, SIMD

21 24 27 210 213 216
0%

50%

100%

number of ranks

c=1 c=32
c=2 c=64
c=4 c=128
c=8 c=256
c=16

Figure 9: Left: Intranode FMM parallelization — efficiency of different threading
implementations. Near field interaction of 114,537 particles in double pre-
cision on up to 28 cores on a single node with two 14-core Intel Xeon
E5-2695 v3 CPUs. Single precision computation as well as other thread-
ing schemes (std::thread, boost::thread, OpenMP) showed similar excel-
lent scaling behavior. The plot has been normalized to the maximum
turbo mode frequency which varies with the number of active cores (3.3–
2.8 GHz for scalar operation, 3.0–2.6 GHz for SIMD operation). Right:
Internode parallelization — strong scaling efficiency of a communication
avoiding, replication-based workload distribution scheme [10]. Near field
interaction of 114,537 particles on up to 65,536 Blue Gene/Q cores using
replication factor c. In the initial replication phase, only c nodes within a
group communicate. Afterwards, communication is restricted to all pairs
of p/c groups. For 65,536 cores, i.e. only 1–2 particles per core initially, a
maximum parallel efficiency of 84 % (22 ms runtime) is reached for c = 64,
and the maximal replication factor c = 256 yields an efficiency of 73 %,
while a classical particle distribution (c = 1) would require a runtime
exceeding 1 minute due to communication latency.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

25

−10 1−10 3−10 5−10 7−10 9−10 11−10 13−10 15

relative energy error ∆Erel

multipole order

tree depth

0

20

40

60
m

ul
tip

ol
e

or
de

r
 p

3

4

5

FM
M

 tr
ee

 d
ep

th
 d

higher accuracy

Figure 10: Depending on a maximum relative or absolute energy tolerance ∆E, the
automatic runtime minimization provides the optimal set of FMM in-
put parameters {d, p}. A lower requested error in energy results in an
increased multipole order p (magenta). Since the computational com-
plexity of the farfield operators M2M, M2L and L2L scales with p3 or
even p4 (depending on the used implementation), the tree depth d is re-
duced accordingly to achieve a minimal runtime (green). With fractional
depths [49], as used here, the runtime can be optimized even more than
with integer depths.

at minimal computational costs (Fig. 10) [6].

Besides tuning the accuracy to achieve a certain acceptable error in the Coulombic
energy for each time step, the FMM can additionally be tuned to reduce the energy
drift over time.

Whereas multipole orders of about ten yield a comparable drift of the total energy
over time as a typical simulation with PME, the drift with FMM can be reduced to
much lower levels if desired (Fig. 11).

3.4 CUDA implementation of the FMM for GPUs

A growing number of HPC clusters incorporate accelerators like GPUs to deliver
a large part of the FLOPS. Also GROMACS evolves towards offloading more and
more tasks to the GPU, for reasons of both performance and cost-efficiency [32, 31].

For system sizes that are typical for biomolecular simulations, FMM performance
critically depends on the M2L and P2P operators. For multipole orders of about
eight and larger their execution times dominate the overall FMM runtime (Fig. 12).

Hence, these operators need to be parallelized very efficiently on the GPU. At the
same time, all remaining operators need to be implemented on the GPU as well to

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

26

Å

Figure 11: Observed drift of the total energy for different electrostatics settings.
Left: evolution of the total energy for PME with order 4, mesh dis-
tance 0.113 nm, ewald-rtol set to 10−5 (black line) as well as for FMM
with different multipole orders p at depth d = 3 (see legend in the right
panel). Test system is a double precision simulation at T ≈ 300 K in pe-
riodic boundaries of 40 Na+ and 40 Cl− ions solvated in a 4.07 nm3 box
containing extended simple point charge (SPC/E) water molecules [3],
comprising 6,740 atoms altogether. Time step ∆t = 2 fs, cutoffs at 0.9
nm, pair-list updated every 10 steps. Right: Black squares show the
drift with PME for different Verlet buffer sizes for the water/ions system
using 4 × 4 cluster pair lists [41]. For comparison, green line shows the
same for pure SPC/E water (without ions) taken from Ref. [34]. Influ-
ence of different multipole orders p on the drift is shown for a fixed buffer
size of 8.3 Å. The GROMACS default Verlet buffer settings yield a drift
of ≈ 8× 10−5 kJ/mol/ps per atom for these MD systems, corresponding
to the first data point on the left (black square / green circle).

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

27

GTX 1080Ti
depth d = 4

GTX 1080Ti
depth d = 3

RTX 2080
depth d = 3

Figure 12: Colored bars show detailed timings for the various parts of a single FMM
step on a GTX 1080Ti GPU for a 103,000 particle system using depth
d = 3. For comparison, total execution time for d = 3 on an RTX 2080
GPU is shown as brown line, whereas black line shows timings for d = 4
on a GTX 1080Ti GPU. CUDA parallelization is used in each FMM stage
leaving the CPU mostly idle.

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

28

avoid memory traffic between device (GPU) and host (CPU) that would otherwise
become necessary. This traffic would introduce a substantial overhead as a complete
MD time step may take just a few milliseconds to execute.

Our encapsulated GPU FMM implementation takes particle positions and charges
as input and returns the electrostatic forces on the particles as output. Memory
transfers between host and device are performed only at these two points in the
calculation step.

The particle positions and charges are split into different CUDA streams that allow
for asynchronous memory transfer to the host. The memory transfer is overlapped
with the computation of the spatial affiliation of the octree box.

In contrast to the CPU FMM that utilizes O(p3) far field operators (M2M, M2L,
L2L), the GPU version is based on the O(p4) operator variant. The O(p3) operators
require less multiplications to calculate the result, but they introduce additional
highly irregular data structures to rotate the moments. Since the performance of
the GPU FMM at small multipole orders is not limited by the number of floating
point operations (Fig. 12) but rather by scattered memory access patterns, we use
the O(p4) operators for the GPU implementation.

We will now outline our CUDA implementation of the operations needed in the
various stages of the FMM (Figs. 4–6), which starts by building the multipoles on
the lowest level with the P2M operator.

P2M – Particle To Multipole

The P2M operation is described in detail elsewhere [44]. The large number of
registers that is required and the recursive nature of this stage limits the efficient
GPU parallelization. The operation is however executed independently for each
particle and the requested multipole expansion is gained by summing atomically
into common expansion points. The result is precomputed locally using shared
memory or intra-warp communication to reduce the global memory traffic when
storing the multipole moments. The multipole moments ω, local moments µ and
the far field operators A,M, and C are stored as triangular shaped matrices

ω, µ,A,C ∈ Kp×p := {(xlm)l=0,...,p, m=−l,...,l | xlm ∈ C } (7)

and M ∈ K2p×2p, where p is the multipole order.

To map the triangular matrices efficiently to contiguous memory, their elements
are stored as 1D arrays of complex values and the l,m indices are calculated on the
fly when accessing the data. For optimal performance, different stages of the FMM
require different memory access patterns. Therefore, the data structures are stored
redundantly in a Structure of Arrays (SoA) and Array of Structures (AoS) version.
The P2M operator writes to AoS, whereas the far field operators use SoA. A copy

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

29

kernel, negligible in runtime, does the copying from one structure to another.

M2M – Multipole To Multipole

The M2M operation, which shifts the multipole expansions of the child boxes to
their parents, is executed on all boxes within the tree, except for the root node which
has no parent box. The complexity of this operation is O(p4); one M2M operation
has the form

ωlm(a′) =
l∑

j=0

j∑

k=−j
ωjk(a)Al−j,m−k(a− a′), (8)

where A is the M2M operator and a and a′ are different expansion center vectors.
The operation performs O(p2) dot products between ω and a part of the operator
A. These operations need to be executed in all boxes in the octree, excluding the
box on level 0, i.e. the root node. The kernels are executed level wise on each
depth, synchronizing between each level. Each computation of the target ωlm for
a distinct (l,m) pair is performed in a different CUDA block of the kernel, with
threads within a block accessing different boxes sharing the same operator. The
operator can be efficiently preloaded into CUDA shared memory and is accessed
for different ωlm residing in different octree boxes. Each single reduction step is
performed sequentially by each thread. This has the advantage that the partial
products are stored locally in registers, reducing the global memory traffic since only
O(p2) elements are written to global memory. It also reduces the atomic accesses,
since the results from eight distinct multipoles are written into one common target
multipole.

M2L – Multipole To Local

The M2L operator works similarly to M2M, but it requires much more transfor-
mations as each source ω is transformed to 189 target µ boxes. The group of boxes
to which a particular ω is transformed to is called the interaction set. It contains
all child boxes of the direct neighbor boxes of the source’s ω parent. The M2L
operation is defined as

µlm(r) =
∞∑

j=0

j∑

k=−j
ωjk(a)Ml+j,m+k(a− r), (9)

where r and a are different expansion centers. The operation differs only slightly
from M2M in the access pattern but is of the same O(p4) complexity. As the M2L
runtime is crucial for the overall FMM performance, we have implemented several
parallelization schemes. Which scheme is the fastest depends on tree depth and
multipole order. The most efficient implementation is based on presorted lists con-

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

30

taining interaction box pointers. The lists are presorted so that the symmetry of the
operator M can be exploited. In M, the orthogonal operator elements differ only
by their sign. Harnessing this minimizes the number of multiplications and global
memory accesses and allows to reduce the number of spawned CUDA blocks from
189 to 54. However, it introduces additional overhead in logic to change signs and
computations of additional target µ box positions, so the performance speedup is
smaller than 189/54. The kernel is spawned similarly to the M2M kernel performing
one dot product per CUDA block preloading the operator M into shared memory.
The sign changing is done with the help of and additional bitset provided for each
operator. Three different parallelization approaches are compared in Fig. 13. Con-
sidering the hardware performance bottlenecks of this stage, the limitations highly
differ for particular implementations. The naive M2L kernel is clearly bandwidth
limited and achieves nearly 500 GB/s for multipole orders larger than ten. This is
higher than the theoretical memory throughput of the tested GPU, which is 480
GB/s, due to caching effects. The cache utilization is nearly at 100% achieving
3500 Gb/s. However, the performance of this kernel can be enhanced further by
moving towards more compute bound regime. With the dynamical approach the
performance is mainly limited by the costs of spawning additional kernels. It can
be clearly seen with the flat curve shape for multipoles smaller than 13 in Fig. 13.
The hardware utilization for the symmetrical kernel is depicted in Fig. 14. The
performance of this kernel depends on the multipole order p, since p2 is a CUDA
gridsize parameter [40]. The values p < 7 lead to underutilization of the underly-
ing hardware, however they are mostly not of practical relevance. For larger values
the performance is operations bound achieving about 80% of the possible compute
utilization.

L2L – Local To Local

The L2L operation is executed for each box in the octree, shifting the local mo-
ments from the root of the tree down to the leaves, opposite in direction to M2M.
Although the implementation is nearly identical, it achieves slightly better perfor-
mance than M2M because the number of atomic memory accesses is reduced due to
the tree traversing direction. For the L2L operator, the result is written into eight
target boxes, whereas M2M gathers information from eight source boxes into one.

L2P – Local To Particles

The calculation of the potentials at particle positions xi requires evaluating

Φ(xi) =

p∑

l=0

l∑

m=−l
µlmω̊

i
lm, i = 0, ..., Nbox , (10)

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

31

naive

dynamic

symmetric

Figure 13: Comparison of three different parallelization schemes for the M2L opera-
tor, which is the most compute intensive part of the FMM algorithm. The
naive implementation (red) directly maps the operator loops to CUDA
blocks. It beats the other schemes only for orders p < 2. Dynamic par-
allelization (blue) is a CUDA specific approach that dynamically spawns
thread groups from the kernels. The symmetric scheme (magenta) rep-
resents the FMM tree via presorted interaction lists. It also exploits the
symmetry of the M2L operator.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
multipole order p

0.0

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n

compute
memory
shared memory

Figure 14: Hardware utilization of the symmetrical M2L kernel of the GPU-FMM.

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

32

64 128 256 512 1024 2048 4096 8192 16384
Number of particles

1.6

1.8

2.0

2.2

2.4
Sp

ee
du

p

FMM depth 1
FMM depth 2
FMM depth 3
FMM depth 4

Figure 15: Speedup of calculating the P2P direct interactions in chunks of M×N =
32 (i.e. for cluster pairs of size M and N) compared to computing them
for all atomic pairs (i.e. for “clusters” of size M = N = 1). All needed
FMM box-box interactions are taken into account.

where ω̊ilm is a chargeless multipole moment of particle at position xi and Nbox the
number of particles in the box. The complexity of each operation is O(p2). This
stage is similar to P2M since the chargeless moments need to be evaluated for each
particle using the same routine for a charge of q = 1. The performance is limited by
register requirement but like in the P2M stage it runs concurrently for each particle
and it is overlapped with the asynchronous memory transfer from device to host.

P2P – Particle To Particle

The FMM computes direct Coulomb interactions only for particles in the leaves
of the octree and between particles in boxes that are direct neighbors. These inter-
actions can be computed for each pair of atoms directly by starting one thread for
each target particle in the box that sequentially loops over all source particles. An
alternative way that better fits the GPU hardware is to compute these interactions
for pairs of clusters of size M and N particles, with M ×N = 32 the CUDA warp
size, as laid out in [41]. The forces acting on the sources and on the targets are
calculated simultaneously. The interactions are computed in parallel between all
needed box-box pairs in the octree. The resulting speedup of computing all atomic
interactions between pairs of clusters instead of using simpler, but longer loops over
pairs of atoms is shown in Fig. 15. The P2P kernels are clearly compute bound.
The exact performance evaluation of the kernel can be found in [41].

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

33

0 100000 200000 300000 400000 500000
Number of particles

0.02

0.04

0.06

0.08

tim
e

(s
)

FMM depth 3
FMM depth 4

Figure 16: Absolute runtime of the λ-FMM CUDA implementation. For this exam-
ple we use one λ site per 4,000 particles as estimated from the hen egg
white lysozyme model system for constant-pH simulation. Each form of
a λ site contains ten particles. The tests were run on a GTX 1080Ti
GPU.

3.5 GPU FMM with λ-dynamics support

In addition to the regular Coulomb interactions, with λ-dynamics, extra energy
terms for all forms of all λ sites need to be evaluated such that the forces on the λ
particles can be derived. The resulting additional operations exhibit a very unstruc-
tured pattern that varies depending on the distribution of the particles associated
with λ sites. Such a pattern can be described by multiple sparse FMM octrees
that additionally interact with each other. The sparsity that emerges from a rel-
atively small size of the λ sites necessitates a different parallelization than for a
standard FMM. To support λ-dynamics efficiently, all stages of the algorithm were
adapted. Especially, the most compute intense shifting (M2M, L2L) and transfor-
mation (M2L) operations need a different parallelization than that of the normal
FMM to run efficiently for a sparse octree. Fig. 16 shows the runtime of the CUDA
parallelized λ-FMM as a function of the system size, whereas Fig. 17 shows the
overhead associated with λ-dynamics. The overhead that emerges from addition of
λ sites to the simulation system scales linearly with the number of additional sites
with a factor of about 10−3 per site. This shows that the FMM tree structure fits
particularly well the λ-dynamics requirements for flexibility to compute the highly
unstructured, additional particle-particle interactions. Note that our λ-FMM ker-
nels still have the potential for more optimizations (at the moment they achieve
only about 60% of the efficiency of the regular FMM kernels) such that for the final
optimized implementation we expect the costs for the additional sites to be even
smaller than what is shown in Fig. 17.

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

34

0 20 40 60 80 100 120
Number of sites

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

re
la

tiv
e

co
st

s

FMM depth 3
FMM depth 4

Figure 17: As Fig. 16, but now showing relative costs of adding λ-dynamics func-
tionality to the regular GPU FMM.

4 Conclusions and Outlook

All-atom, explicit solvent biomolecular simulations with λ-dynamics are still lim-
ited to comparatively small simulation systems (<100,000 particles) and/or short
timescales [18, 7, 9]. To ultimately allow for a realistic (e.g., const-pH) treatment of
large biomolecular systems on long timescales, we are developing an efficient FMM
that computes the long-range Coulomb interactions, including local charge alterna-
tives for a large number of sites, with just a small overhead compared to the case
without λ-dynamics.

Our FMM library is a modern C++11 based implementation tailored towards the
specific requirements of biomolecular simulation, which are a comparatively small
number of particles per compute core and a very short wall clock time per iteration.
The presented implementation offers near-optimal performance on various SIMD
architectures, an efficient CUDA version for GPUs, and it makes use of fractional tree
depths for optimal performance. In addition to supporting chemical variability via
λ-dynamics, it has several more unique features such as a rigorous error control, and
based upon that, an automatic performance optimization at runtime. The energy
drift resulting from errors in the FMM calculation can be reduced to virtually zero
with a newly developed scheme that adapts the multipole expansion order p locally
and on the fly in response to the requested maximum energy error. With fixed p,
using multipole orders 10− 14 yields drifts that are smaller than those observed for
typical simulations with PME. We expect the FMM to be useful also for normal
MD simulations, as a drop-in PME replacement for extreme scaling scenarios where
PME reaches its scaling limit.

The GPU version of our FMM will implicitly use the same parallelization frame-
work as the CPU version. In fact, GPUs will be treated as one of several resources
a node offers (in addition to CPUs), to which tasks can be scheduled. As our GPU

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

35

implementation is not a monolithic module, it can be used to calculate individual
parts of the FMM, like the near-field contribution or the M2L operations of one
of the local boxes only, in a fine-grained manner. How much work is offloaded to
local GPUs will depend on the node specifications and on how much GPU and CPU
processing power is available.

The λ-dynamics module allows to choose between three different variants of λ-
dynamics. The dynamics and equilibrium distributions of the lambdas can be flex-
ibly tuned by a barrier potential, whereas buffer sites ensure system neutrality in
periodic boundary conditions. Compared to a regular FMM calculation without
local charge alternatives, the GPU-FMM with λ-dynamics is only a factor of two
slower even for a large (500,000 atom) simulation system with more than hundred
protonatable sites.

Although some infrastructure that is needed for out-of-the-box constant-pH sim-
ulations in GROMACS still has to be implemented, with the λ-dynamics and FMM
modules, the most important building blocks are in place and performing well. The
next steps will be to carry out realistic tests with the new λ-dynamics implementa-
tion and to thoroughly compare to known results from older studies, before advanc-
ing to larger, more complex simulation systems that have become feasible now.

Acknowledgements

This work is supported by the German Research Foundation (DFG) Cluster of
excellence Multiscale Imaging and under the DFG priority programme 1648 Software
for Exascale Computing (SPPEXA).

References

[1] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi.
Task-based FMM for multicore architectures. SIAM Journal on Scientific Com-
puting, 36(1):C66–C93, 2014. doi: 10.1137/130915662.

[2] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann,
M. Pippig, D. Potts, and G. Sutmann. Comparison of scalable fast methods
for long-range interactions. Phys. Rev. E, 88(6):063308, 2013.

[3] H. Berendsen, J. Grigera, and T. Straatsma. The missing term in effective pair
potentials. J. Phys. Chem., 91(24):6269–6271, 1987.

[4] L. V. Bock, C. Blau, A. C. Vaiana, and H. Grubmüller. Dynamic contact
network between ribosomal subunits enables rapid large-scale rotation during
spontaneous translocation. Nucleic Acids Res., 43(14):6747–6760, 2015.

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

36

[5] M. Bolten, F. Fahrenberger, R. Halver, F. Heber, M. Hofmann, I. Kabadshow,
O. Lenz, M. Pippig, and G. Sutmann. ScaFaCoS, C subroutine library. URL
http://scafacos.github.com.

[6] H. Dachsel. An error-controlled fast multipole method. J. Chem. Phys., 132:
119901, 2010. doi: 10.1063/1.3264952.

[7] P. Dobrev, S. Donnini, G. Groenhof, and H. Grubmüller. Accurate three states
model for amino acids with two chemically coupled titrating sites in explicit
solvent atomistic constant pH simulations and pKa calculations. Journal of
Chemical Theory and Computation, 13(1):147–160, 2017. doi: 10.1021/acs.
jctc.6b00807.

[8] S. Donnini, F. Tegeler, G. Groenhof, and H. Grubmüller. Constant pH molec-
ular dynamics in explicit solvent with λ-dynamics. J. Chem. Theory Comput.,
7:1962–1978, 2011. doi: 10.1021/ct200061r.

[9] S. Donnini, R. T. Ullmann, G. Groenhof, and H. Grubmüller. Charge-
neutral constant pH molecular dynamics simulations using a parsimonious
proton buffer. J. Chem. Theory Comput., 12(3):1040–1051, 2016. doi:
10.1021/acs.jctc.5b01160.

[10] M. Driscoll, E. Georganas, P. Koanantakool, E. Solomonik, and K. Yelick.
A communication-optimal n-body algorithm for direct interactions. Parallel
and Distributed Processing Symposium, International, 0:1075–1084, 2013. ISSN
1530-2075. doi: 10.1109/IPDPS.2013.108.

[11] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen.
A smooth particle mesh Ewald method. J. Chem. Phys., 103(19):8577–8593,
1995. doi: 10.1063/1.470117.

[12] A. G. Garcia, A. Beckmann, and I. Kabadshow. Accelerating an FMM-Based
Coulomb Solver with GPUs, pages 485–504. Springer International Publishing,
Cham, 2016. ISBN 978-3-319-40528-5. doi: 10.1007/978-3-319-40528-5 22.

[13] G. B. Goh, J. L. Knight, and C. L. Brooks. Constant pH molecular dynamics
simulations of nucleic acids in explicit solvent. J. Chem. Theory Comput., 8:
36–46, 2012. doi: 10.1021/ct2006314.

[14] G. B. Goh, B. S. Hulbert, H. Zhou, and C. L. Brooks III. Constant pH molecular
dynamics of proteins in explicit solvent with proton tautomerism. Proteins:
structure, function, and bioinformatics, 82(7):1319–1331, 2014.

[15] L. Greengard and V. Rokhlin. A new version of the fast multipole method for
the Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.
doi: 10.1017/S0962492900002725.

[16] Z. Guo, C. Brooks, and X. Kong. Efficient and flexible algorithm for free energy
calculations using the λ-dynamics approach. J. Phys. Chem. B, 102(11):2032–
2036, 1998.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

37

[17] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms
for highly efficient, load-balanced, and scalable molecular simulation. J. Chem.
Theory Comput., 4:435–447, 2008. doi: 10.1021/ct700301q.

[18] Y. Huang, W. Chen, J. A. Wallace, and J. Shen. All-atom continuous constant
pH molecular dynamics with particle mesh Ewald and titratable water. J.
Chem. Theory Comput., 12(11):5411–5421, 2016.

[19] J. S. Hub, B. L. de Groot, H. Grubmüller, and G. Groenhof. Quantifying
artifacts in Ewald simulations of inhomogeneous systems with a net charge. J.
Chem. Theory Comput., 10:381–390, 2014. doi: 10.1021/ct400626b.

[20] M. Igaev and H. Grubmüller. Microtubule assembly governed by tubulin al-
losteric gain in flexibility and lattice induced fit. eLife, 7:e34353, 2018.

[21] J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin,
M. Wall, A. Lappala, D. Phillips, W. Fischer, C.-S. Tung, T. Schlick, Y. Sugita,
and K. Y. Sanbonmatsu. Scaling molecular dynamics beyond 100,000 processor
cores for large-scale biophysical simulations. J. Comput. Chem., 2019.

[22] I. Kabadshow and H. Dachsel. The Error-Controlled Fast Multipole Method
for Open and Periodic Boundary Conditions. In G. Sutmann, P. Gibbon, and
T. Lippert, editors, Fast Methods for Long-Range Interactions in Complex Sys-
tems, volume 6 of IAS Series, pages 85–114. FZ Jülich, 2011.

[23] J. Khandogin and C. L. Brooks. Constant pH molecular dynamics with proton
tautomerism. Biophys. J, 89(1):141–157, 2005.

[24] J. G. Kirkwood. Statistical mechanics of fluid mixtures. J. Chem. Phys., 3(5):
300–313, 1935.

[25] J. L. Knight and C. L. Brooks III. λ-dynamics free energy simulation methods.
J. Comput. Chem., 30(11):1692–1700, 2009.

[26] J. L. Knight and C. L. Brooks III. Applying efficient implicit nongeometric
constraints in alchemical free energy simulations. J. Comput. Chem., 32(16):
3423–3432, 2011. doi: 10.1002/jcc.21921.

[27] X. Kong and L. Brooks III, Charles. λ-dynamics: A new approach to free energy
calculations. J. Chem. Phys., 105:2414–2423, 1996. doi: 10.1063/1.472109.

[28] W. Kopec, D. A. Köpfer, O. N. Vickery, A. S. Bondarenko, T. L. Jansen, B. L.
de Groot, and U. Zachariae. Direct knock-on of desolvated ions governs strict
ion selectivity in K+ channels. Nat. Chem., 10(8):813, 2018.

[29] C. Kutzner, D. van der Spoel, M. Fechner, E. Lindahl, U. W. Schmitt, B. L.
de Groot, and H. Grubmüller. Speeding up parallel GROMACS on high-latency
networks. J. Comput. Chem., 28(12):2075–2084, 2007. doi: 10.1002/jcc.20703.

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

38

[30] C. Kutzner, R. Apostolov, B. Hess, and H. Grubmüller. Scaling of the
GROMACS 4.6 molecular dynamics code on SuperMUC. In M. Bader,
A. Bode, and H.-J. Bungartz, editors, Parallel Computing: Accelerating Com-
putational Science and Engineering (CSE), pages 722–730. IOS Press, Amster-
dam/Netherlands, 2014. doi: 10.3233/978-1-61499-381-0-722.

[31] C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. de Groot, and
H. Grubmüller. Best bang for your buck: GPU nodes for GROMACS
biomolecular simulations. J. Comput. Chem., 36(26):1990–2008, 2015. doi:
10.1002/jcc.24030.

[32] C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and
H. Grubmüller. More bang for your buck: Improved use of GPU nodes
for GROMACS 2018. J. Comput. Chem., 40(27):2418–2431, 2019. doi:
10.1002/jcc.26011.

[33] M. S. Lee, F. R. Salsbury Jr, and C. L. Brooks III. Constant-pH molecular dy-
namics using continuous titration coordinates. Proteins Struct. Funct. Bioinf.,
56(4):738–752, 2004.

[34] E. Lindahl, M. Abraham, B. Hess, and D. van der Spoel. GROMACS 2019.3
Manual. Zenodo, Jun 2019. doi: 10.5281/zenodo.3243834.

[35] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Transactions on Computer Systems
(TOCS), 9(1):21–65, 1991.

[36] D. J. Mermelstein, C. Lin, G. Nelson, R. Kretsch, J. A. McCammon, and R. C.
Walker. Fast and flexible GPU accelerated binding free energy calculations
within the AMBER molecular dynamics package. J. Comput. Chem., 39(19):
1354–1358, 2018.

[37] J. E. Mertz and B. M. Pettitt. Molecular dynamics at a constant pH. The
International Journal of Supercomputer Applications and High Performance
Computing, 8(1):47–53, 1994.

[38] D. L. Mobley and P. V. Klimovich. Perspective: Alchemical free energy calcu-
lations for drug discovery. J. Chem. Phys., 137(23):230901, 2012.

[39] J. Mongan and D. A. Case. Biomolecular simulations at constant pH. Curr.
Opin. Struct. Biol., 15(2):157–163, 2005.

[40] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2019. Version
10.1.243.

[41] S. Páll and B. Hess. A flexible algorithm for calculating pair interactions on
SIMD architectures. Comput. Phys. Commun., 184:2641–2650, 2013. doi: 10.
1016/j.cpc.2013.06.003.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

39

[42] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tackling exascale
software challenges in molecular dynamics simulations with GROMACS. In
S. Markidis and E. Laure, editors, Solving Software Challenges for Exascale,
pages 3–27, Cham, 2015. Springer International Publishing. ISBN 978-3-319-
15976-8.

[43] J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi, T. Rudack,
H. Yu, Z. Wu, and K. Schulten. Molecular dynamics simulations of large macro-
molecular complexes. Curr. Opin. Struct. Biol., 31:64–74, 2015.

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 3rd edition, 2007. ISBN 0521880688,
9780521880688.

[45] R. Schulz, B. Lindner, L. Petridis, and J. C. Smith. Scaling of multimillion-
atom biological molecular dynamics simulation on a petascale supercomputer.
J. Chem. Theory Comput., 5(10):2798–2808, 2009.

[46] D. Seeliger and B. L. De Groot. Protein thermostability calculations using
alchemical free energy simulations. Biophys. J., 98(10):2309–2316, 2010.

[47] M. R. Shirts, D. L. Mobley, and J. D. Chodera. Alchemical free energy calcu-
lations: ready for prime time? Annual reports in computational chemistry, 3:
41–59, 2007.

[48] J. A. Wallace and J. K. Shen. Charge-leveling and proper treatment of long-
range electrostatics in all-atom molecular dynamics at constant pH. J. Chem.
Phys., 137(18):184105, 2012.

[49] C. A. White and M. Head-Gordon. Fractional tiers in fast multipole method
calculations. Chem. Phys. Lett., 257(5-6):647–650, 1996. ISSN 0009-2614. doi:
10.1016/0009-2614(96)00574-X.

[50] R. Yokota and L. A. Barba. A Tuned and Scalable Fast Multipole Method as
a Preeminent Algorithm for Exascale Systems. CoRR, abs/1106.2176, 2011.
URL http://arxiv.org/abs/1106.2176.

II.1 GROMEX: A SCALABLE AND VERSATILE FAST MULTIPOLE
METHOD FOR BIOMOLECULAR SIMULATION

40

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

II.2 A CUDA Fast Multipole Method with highly efficient
M2L far field evaluation

In this paper, I reported on the GPU parallelization process of the most perfor-
mance critical operator of the FMM. The entire work presented in this paper was
conducted by me. I also completely wrote the paper. The content of this work was
then finally edited by Dr. Carsten Kutzner, Prof. Dr. Gert Lube and Prof. Dr.
Helmut Grubmüller. Dr. Carsten Kutzner also enhanced graphically a few figures
in this work. This paper has been accepted for publication in The International
Journal of High Performance Computing Applications (IJHPCA).

41

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

42

A CUDA Fast Multipole Method
with highly efficient M2L far field

evaluation

Bartosz Kohnke1, Carsten Kutzner1, Andreas Beckmann2, Gert
Lube3, Ivo Kabadshow2, Holger Dachsel2, and Helmut Grubmüller1

1Max Planck Institute for Biophysical Chemistry, Theoretical and Computational
Biophysics, Am Faßberg 11, 37077 Göttingen

2Jülich Supercomputing Centre, Forschungszentrum Jülich, Wilhelm Johnen Straße 1,
52428 Jülich

3Institute for Numerical and Applied Mathematics, Georg-August University of
Göttingen, Lotzestr. 16–18, 37083 Göttingen

Solving an N-body problem, electrostatic or gravitational, is a cru-
cial task and the main computational bottleneck in many scientific
applications. Its direct solution is an ubiquitous showcase exam-
ple for the compute power of graphics processing units (GPUs).
However, the näıve pairwise summation has O(N2) computational
complexity. The fast multipole method (FMM) can reduce run-
time and complexity to O(N) for any specified precision. Here,
we present a CUDA-accelerated, C++ FMM implementation for
multi particle systems with r−1 potential that are found, e.g., in
biomolecular simulations. The algorithm involves several operators
to exchange information in an octree data structure. We focus on
the Multipole-to-Local (M2L) operator, as its runtime is limiting
for the overall performance. We propose, implement and bench-
mark three different M2L parallelization approaches. Approach (1)
utilizes Unified Memory to minimize programming and porting ef-
forts. It achieves decent speedups for only little implementation
work. Approach (2) employs CUDA Dynamic Parallelism to sig-
nificantly improve performance for high approximation accuracies.
The presorted list-based approach (3) fits periodic boundary con-
ditions particularly well. It exploits FMM operator symmetries to
minimize both memory access and the number of complex multipli-
cations. The result is a compute bound implementation, i.e., perfor-
mance is limited by arithmetic operations rather than by memory
accesses. The complete CUDA parallelized FMM is incorporated
within the GROMACS molecular dynamics package as an alterna-
tive Coulomb solver.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

43

1 Introduction

The fast multipole method (FMM) was introduced by Greengard and Rokhlin
[23] to efficiently evaluate pairwise, Coulombic or gravitational, interactions in many
body systems, which arise in many diverse fields like biomolecular simulation [16, 27],
astronomy [47, 6] or plasma physics [13]. Moreover, the FMM can improve iterative
solvers for integral equations by speeding up the underlying matrix-vector products
[18, 25].

The originally proposed FMM uses a spherical harmonics representation of the
inverse distance r−1 between particles. For distant interactions (far field), which can
be strictly defined, it uses multipole expansions built by clustered particle groups.
The expansions are shifted and then transformed into Taylor moments by applying
linear operators in a hierarchical manner to achieve linear scaling with respect to
the number of particles. The complexity of the operators is O(p4), where p is the
order of the multipole expansion. White and Head-Gordon [56] and Greengard
and Rokhlin [24] proposed rotational operators, that align the transformation axis
to reduce the operator complexity to O(p3). Cheng et al. [11] used plain wave
expansions to further reduce the complexity of the operators to O(p2), however a
few O(p3) translations are still required. The algorithm has been developed further
to support oscillatory kernels eikr/r [58]. Fong and Darve [20] parametrized the
inverse distance function using Chebyshev polynomials and proposed a ”black-box”
FMM, which uses a minimal number of coefficients to represent the far field.

In atomistic molecular dynamics (MD) simulations, Newton’s equations of motion
are solved for a system of N particles [3] in a potential that accounts for all relevant
interactions between the atoms. The integration time step is limited to a few fem-
toseconds such that the fastest atomic motions can be resolved. To reach the time
scales many biomolecules operate on, millions of time steps need to be computed
[38, 10, 50, 46]. This can easily require weeks or even months of compute time even
on modern hardware [37]. Hence, to speed up the calculation of an MD trajectory,
the execution time for each individual time step has to be reduced. This can be
achieved with better algorithms, with special-purpose hardware [52], by introduc-
ing heterogeneous parallelization, e.g. harnessing SIMD, multi-core, and multi-node
parallelism [28, 1, 44] and by using GPUs [48, 43]. Here, we utilize GPUs for our
FMM implementation.

The electrostatic contribution to the inter-atomic forces is governed by Coulomb’s
law

Fij =
1

4πε0

qiqj

‖rij‖22
rij
‖rij‖2

, (1)

where rij = xi − xj is a vector distance between atoms carrying partial charges
qi, qj at positions xi, xj, ε0 is the vacuum permittivity and ‖·‖2 is the Euclidean
distance. The calculation of nonbonded forces, i.e. Coulomb and van der Waals
forces, is usually by far the most time-consuming part of an MD step. The van der

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

44

Waals forces decay very quickly with distance r, so calculating them up to a cutoff
distance suffices. The Coulomb forces, however, decay only quadratically with r, and
the use of a finite Coulomb cutoff can therefore lead to severe simulation artifacts
[49, 45]. Direct evaluation of the electrostatic interactions in a typical biomolecular
simulation system becomes prohibitive for two reasons. First, the O(N2) scaling of a
direct evaluation hinders its usage already at small system sizes, e.g. for N ≈ 50, 000
particles. Second, the usually employed periodic boundary conditions (PBC) make
such calculation even impossible. Biomolecular simulation, therefore, requires an
efficient Coulomb solver that properly accounts for the full, long range nature of the
electrostatic interactions.

To this aim, several FMM implementations have been developed. A standard
FMM was included as an electrostatic solver for the NAMD package [8, 40]. Ding
et al. [14] proposed the Cell Multipole Method (CMM) to simulate polymer sys-
tems of up to 1.2 million atoms. In further work, they combined CMM with the
Ewald method showing a considerable speedup with respect to a pure Ewald treat-
ment [15]. Niedermeier and Tavan [42] introduced a structure-adapted multipole
method. Eichinger et al. [17] combined the structure-adapted multipole method
with a multiple-time-step algorithm. Andoh et al. [4] developed MODYLAS, a
FMM adoption for very large MD systems and benchmarked it on the K-computer
using 65,536 nodes. Very recently, it was extended to support rectangular boxes
[5]. Yoshii et al. [60] developed a FMM for MD systems with two-dimensional pe-
riodic boundary conditions. Shamshirgar et al. [51] implemented a regularization
method for improved FMM energy conservation. Gnedin [22] combined fast Fourier
transforms (FFTs) and the FMM for improved performance.

Considering efficient parallelization approaches, Gumerov and Duraiswami [26] pi-
oneered the GPU implementations of the spherical harmonics FMM with rotational
operators. Depending on accuracy they achieved speedups of 30–70 with respect to
a single CPU. Different GPU parallelization schemes for the ”black-box” FMM [20]
were implemented by Takahashi et al. [53]. Yokota et al. [59] parallelized ExaFmm
on a GPU cluster with 32 GPUs achieving a parallel efficiency of 44 % and 66 %
for 106 and 107 particles, respectively. Even more GPUs (256) were used by Lashuk
et al. [39] for a system of 256 million particles. Rotational based Multipole-to-Local
operators were efficiently parallelized with GPUs by Garcia et al. [21]. Task based
parallelization approaches to the FMM were proposed in Blanchard et al. [7] and
Agullo et al. [2]. A review of fast multipole techniques for calculation of electrostatic
interactions in MD systems can be found in Kurzak and Pettitt [34].

However, the early adoptions of FMMs in MD simulation codes were mostly su-
perseded by particle Mesh Ewald (PME) [19] due to its higher single-node perfor-
mance. As a result, PME currently dominates the field. It is based on the FFT,
which inherently provides the PBC solution. Nevertheless, PME suffers from a scal-
ing bottleneck when parallelized over many nodes, as the underlying FFTs require
all-to-all communication [9, 35, 36]. In addition, large systems with nonuniform
particle distributions become memory intensive, since PME evaluates the forces on
a uniform mesh across the whole computational domain.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

45

In the era of ever-increasing parallelism and exascale computers, it is time to re-
visit the FMM, which does not suffer from the above mentioned limitations. To this
end, we implemented and benchmarked a single-node full CUDA parallel FMM. Our
implementation has been tailored for MD simulations, i.e. it targets a millisecond
order runtime for one MD step by careful GPU parallelization of all FMM stages
and by optimizing their flow to hide possible latencies. It was also meticulously
integrated into the GROMACS package to avoid additional FMM independent per-
formance bottlenecks. Here, we present three different parallelization approaches.
The implementation is based on the ScaFaCos FMM [6], which utilizes spherical
harmonics to describe the r−1 function. We use octree grouping to describe the in-
teraction hierarchy. Such grouping is achieved by recursive subdivision of the cubic
simulation box into eight equal subboxes. It has a major advantage: the far field
operators can be precomputed for the whole simulation box, allowing for efficient
parallelization. Additionally, the PBC computation becomes negligible as the PBC
operators reduce to a single operator appliance. Moreover, a strict error control of
the approximation [12] can be applied.

Here, we focus on the CUDA parallelization of the Multipole-to-Local (M2L) oper-
ator, which is most limiting to the overall FMM far field performance. An overview
of the parallelized FMM, including all stages and complete runtimes, can be found
in Kohnke et al. [33].

2 The Fast Multipole Method

We consider a system of N � 1 particles. Following Hockney and Eastwood [29],
the challenge is to most efficiently evaluate

Φ(xj) =
N−1∑

k=0
k 6=j

qk
‖xj − xk‖2

, j = 0, ..., N − 1, (2)

where xj and xk are positions of particles j and k, respectively and qk is the charge
of the k-th particle. For a direct solution of Eq. (2), interactions between all pairs
of particles (j, k) with j 6= k need to be computed. This leads to two nested loops
and O(N2) calculation steps.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

46

2.1 Mathematical foundations

Expansion of the inverse distance between arbitrary particles xj and xk, j 6= k
yields

1

‖xj − xk‖2
=
∞∑

l=0

l∑

m=−l

‖xj‖l2
‖xk‖l+1

2

Y ∗lm(θj, φj)Ylm(θk, φk), (3)

where

Ylm(θ, φ) :=

√
2l + 1

4π

√
(l −m)!

(l +m)!
Plm(cos θ)eimφ (4)

are spherical harmonics and Y ∗ their complex-conjugate, θ and φ are polar and
azimuthal angle, respectively, and Plm are the associated Legendre polynomials

Plm(y) := (−1)m(1− y2)m/2 d
m

dym
Pl(y), (5)

where Pl are ordinary Legendre polynomials

Pl(y) :=
1

2ll!

dl

dyl
(
y2 − 1

)l
. (6)

The normalized associated Legendre polynomials form an orthonormal set of basis
functions on the surface of a sphere. The j-th and k-th dependent parts of the right
hand side of Eq. (3) are chargeless multipole moments

ω̊jlm := ω̊jlm(xj) :=
‖xj‖l2

(l +m)!
Plm(cos θj)e

imφj , (7)

and chargeless local moments

µ̊klm := µ̊klm(xk) :=
(l −m)!

‖xk‖l+1
2

Plm(cos θk)e
imφk , (8)

respectively. The moments weighted with corresponding charges qj and qk, respec-
tively, can be summed yielding charged multipole moments

ωlm :=
J−1∑

j=0

qjω̊
j
lm, (9)

and charged local moments

µlm :=
K−1∑

k=0

qkµ̊
k
lm. (10)

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

47

This allows to evaluate the potential at arbitrary particles at xj, j = 0, ..., J−1 due to
a distant discrete charge distribution of K particles with positions xk, k = 0, ..., K−1
in terms of charged local moments and chargeless multipole moments with

Φ(xj) =
∞∑

l=0

l∑

m=−l
µlmω̊

j
lm. (11)

This calculation is referred to as far field. To achieve convergence in Eq. (3),

‖xj‖2 < ‖xk‖2 (12)

has to be fulfilled for all distinct index pairs j and k. Application of addition theorems
for regular and irregular solid harmonics [54] yields translation and transformation
operators for the expansions. The moments ωlm of a multipole expansion about a
common origin a

ω(a) :=
∞∑

l=0

l∑

m=−l
ωlm (13)

of particles xj, j = 0, ..., J − 1 can be translated to a new origin a′ with

ωlm(a′) =
l∑

j=0

j∑

k=−j
ωjk(a)Al−j,m−k(a− a′), (14)

where A ≡ ω̊ is the Multipole-to-Multipole operator. Further, the multipole expan-
sion ω(a) can be transformed into a local expansion µ(r) at r with ‖r‖2 > ‖xj‖2,
j = 0, ..., J − 1 with

µlm(r) =
∞∑

j=0

j∑

k=−j
ωjk(a)Ml+j,m+k(a− r), (15)

where M ≡ µ̊ is the Multipole-to-Local operator. Finally, the local expansions µ(r)
can be translated to any point r′ with

µlm(r′) =
∞∑

j=l

j∑

k=−j
µjk(r)Cj−l,k−m(r− r′), (16)

where C ≡ ω̊ is the Local-to-Local operator.

2.2 Algorithm

Applying the operators defined in the previous section requires truncation of
Eq. (3) to a finite multipole order p, which controls the accuracy of the solution
approximation. Such expansions have a triangular shape with indexing shown in

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

48

Fig. 1. The truncation yields

ω, µ,A,C ∈ Kp×p := {(alm)l=0,...,p, m=−l,...,l | alm ∈ C} (17)

and M ∈ K2p×2p.

0,0
1,0

2,0

1,11,-1
2,1

2,22,-2
2,-1

Figure 1: Indexing of triangular shaped matrices. The used indexing scheme is based
on standard matrix index notation: The first subscript is a row number,
the second one is a column number, which can be negative. In case of
(l,m) notation, l ≥ |m| and l ≤ p.

The translations and transformations defined in section 2.1 are performed on mo-
ments expanded for clusters of particles. The clustering is based on a hierarchical
partition of the computational domain Ω := [0, `]3 ∈ R3 into 8d boxes for d = 0, ...,D,
where D is a predefined parameter. It leads to an octree of depth D shown in Fig. 2.
Fig. 3 illustrates the six main stages of the FMM and their execution order. In

FM
M

 t
re

e
b

ox
 s

ub
d

iv
is

io
n

depth 0 depth 1 depth 2

Figure 2: 2D example of FMM tree depth and resulting box subdivision for depths
D = 0, 1, and 2. At D = 1, the whole simulation box (green) is split into
four sub-boxes (blue). At D = 2, each of the sub-boxes is split again into
four smaller boxes (red).

the Particle-to-Multipole (P2M) stage, the particles occupying boxes on the deepest

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

49

level D of the octree are expanded to multipoles ω with respect to the center of
the boxes. In the Multipole-to-Multipole (M2M) stage, the expanded moments ω
are distributed to all boxes of the octree by translating them level-wise from d to
d − 1, d = D, ..., 1 with the A operator. Subsequently, during the Multipole-to-
Local (M2L) stage, the multipole moments ω are transformed into local moments
µ by applying the operator M. A detailed description follows in the next section.
After M2L, in the Local-to-Local (L2L) stage, the local moments µ are shifted from
the octree root to the leaves with the C operator. The interactions between par-
ticles occupying the same lowest level boxes and between neighboring boxes (near
field) are evaluated directly (P2P), Eq. (2). Finally, the far field forces and poten-
tials are evaluated at particle positions in the tree leaves. Additionally, the number
of directly interacting boxes can be defined with a well separation criterion,
which controls how many layers of adjacent boxes interact directly on the lowest
tree depth. In the following we will only discuss the case with one well separated
layer of boxes.

L2L: local-to-local

f&E

forces & energyP2M
M2M

M2L

L2L

P2P: direct summationP2M: particle-to-multipole

M2M: multipole-
to-multipole

P2P

M2L: multipole-to-local

typical
runtime

distribution

1

2

3
4

5

near field
far field

Figure 3: The six different stages of the FMM with an exemplary execution time
distribution at the center. The near field part (P2P, top right corner) can
be executed concurrently with the far field (stages 1–5) in a parallel imple-
mentation. Green squares indicate the representation by multipoles, light
brown squares a representation by local moments, blue squares indicate
direct summation.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

50

2.3 The Multipole-to-Local (M2L) transformation

We will now explain the the M2L transformation and its execution hierarchy.
Let D be a fixed depth of an octree and p a multipole order. The multipole or
local expansions in box i at depth d = 0, ...,D will be denoted by ωdi and µdi ,
respectively. For each µdi there exists an interaction set Ldi , |Ldi | = 208. Fig. 4
shows the interaction set Ldi , which contains the indices of multipole expansions ωdj
in all children boxes of the direct neighbors of µdi ’s parent box. The direct neighbors
share at least one common vertex, edge or face with each other. A particular µdi
is calculated from all ωdj , j ∈ Ldi , omitting µdi ’s direct neighbor boxes in order to
satisfy Eq. (12). This results in 189 O(p4) M2L transformations.

LetM :=
{
Md

}D
d=1

be the set of level-wise operator setsMd := {Md
j→i |M trans-

forms j-th multipole moment to i-th local moment at level d}. All M2L operations
performed in the FMM octree yield

µdi =
∑

j∈Ldi
Md
j∈Md

Md
j→i ω

d
j , i = 1, ..., 8d, d = 1, ...,D. (18)

Fig. 5 shows one O(p4) M2L transformation. It contains O(p2) dot products
between an ω and a part of the corresponding operator M.

multipoles

local
moment

Figure 4: 2D interaction set Ld (green) of an arbitrary box with a local moment µd

(light brown). The white boxes do not belong to interaction set Ld. The
interactions with the light blue boxes need to be skipped as well because
they are nearest neighbors.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

51

Mμlm ω
= ×

= ×

= ×

= ×

= ×

Figure 5: One M2L transformation. The matrix-vector like multiplication requires
a part of the M operator (red) to calculate one element µlm (light brown)
of a target expansion.

3 Implementation

We focus our GPU parallelization efforts on the M2L operator, as it is the most
time consuming FMM far field operator (see Fig. 3 above and Fig. 12 in Kohnke
et al. [33]). In PBC, it requires 189 transformations per box, whereas both M2M
and L2L, which translate the moments between different tree levels, require only a
single transformation per octree box (except for the root box). Since these transfor-
mations are of the same complexity, M2L involves 94.5× the number of operations
as M2M and L2L combined. The second most time consuming part is the P2P near
field computation, which will not be discussed in this paper, was optimized as laid
out in Páll and Hess [43]. Proper choice of D and p allows to balance the near
and far field contribution, which minimizes the overall runtime. In case of parallel
implementation these stages can run concurrently.

3.1 CUDA implementation considerations

We will now briefly outline the CUDA programming model, see Nickolls et al.
[41] for details. A typical GPU consists of a few thousand cores that are grouped
into larger units called multiprocessors. CUDA threads are organized in blocks.
Threads within a block are grouped into subunits called warps, each consisting of 32
threads. For optimal performance, threads within the same warp should execute the

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

52

same instruction, otherwise the execution is serialized. This type of parallelization
is called Single Instruction Multiple Threads (SIMT). Once a block of threads
is spawned, it occupies the multiprocessor until the respective computations are
completed. Dynamic scheduling is performed warp-wise, thus thread blocks should
consist of at least several warps to hide memory and arithmetic latencies within a
multiprocessor. Blocks are organized in grids. Each block of a grid and thread
of a block is identified with its unique 1D, 2D or 3D index. The dimensions of
the grid and the blocks can be chosen independently. To identify threads, CUDA
provides the 3D structures gridDim, blockDim, blockIdx and threadIdx.

We will use the following abbreviations: Bα := blockDim.α, Gα := gridDim.α,
Bidα := blockIdx.α and tidα := threadIdx.α, α ∈ {x, y, z}. The hierarchy of
threads described above affects the memory access and communication between
threads. Whereas all threads can access global memory, this access should be mini-
mized as it has a latency of a few hundred cycles. The memory within a block can
be shared via shared memory. If no bank conflicts occur fetching shared memory is
only slightly slower than register access (20–40 cycles). Synchronization of threads
is possible only within a block. Since CUDA-6.0, threads within the same warp

are able to share their content via the shuffle instruction by directly sharing the
registers.

3.2 Sequential FMM and data structures

Our CUDA implementation is based on a C++11 version of the sequential ScaFa-
Cos FMM [6]. It provides class templates with a possibility to use diverse memory
allocators. With CUDA Unified Memory [31] the usage of original data structures
became feasible by harnessing the C++ memory allocators.

To allow for an efficient manipulation of triangular shaped data (see Figs. 1 and 5),
we have implemented a dedicated triangular matrix class that stores the moments
and operators. It provides the indexing logic and utilizes a 1D vector of complex
values (std::vector<complex>) for this purpose. For symmetry reasons, it suffices
to store one half of the triangular matrix for the moments, as the entries on the left
(m < l) and right side (m > l) are identical except for the signs. The signs are
computed on the fly at negligible costs from the parity of indices. The overall size
of the matrices depends on the multipole order p. Exploiting symmetry, (p2 + p)/2
complex values are stored for the expansions and ((2p)2 + 2p)/2 for the M operator.

Let D be a fixed depth of the tree. Thus, there are d = 0, ...,D levels in an octree.
For Multipole-to-Local operations, as described in The Multipole-to-Local (M2L)
transformation Section, an underlying tree implementation is needed. Listing 1
shows a very basic approach for traversing an octree of depth D. The function
index(x, y, z, d) applies the lexicographic approach to compute a unique 1D box

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

53

Listing 1: Loops for traversing an octree in 3D space (pseudocode).

1 // chosen tree depth D

2 int d,z,y,x,i;

3 for (d = 0; d <= D; ++d)

4 {

5 for (z = 0; z < std::pow(2,d); ++z)

6 {

7 for (y = 0; y < std::pow(2,d); ++y)

8 {

9 for (x = 0; x < std::pow(2,d); ++x)

10 {

11 // unique one dimensional index

12 i = index(x,y,z,d);

index in the octree:

z dim(d) dim(d) + y dim(d) + x+ nb(d− 1), (19)

where dim(d) := 2d is the number of boxes in each orthogonal direction and nb(d) :=∑D
d=0 8d = b(8d+1)/7c is the number of all boxes in an octree of depth d. The parent

box index is easily obtained as index(x/2, y/2, z/2, d− 1).

Listing 2 shows the sequential form of the M2L transformation. The first four
for-loops (lines 3 – 9) traverse the octree as shown in Listing 1. omega and mu store
the pointers to triangular matrix objects for the multipole and local moments, re-
spectively. The next three for-loops determine all multipole expansions ωdj ∈ Ldi that
are needed for the calculation of µdi , i = 1, ..., 8d. Fig. 6 shows the complete 2D op-

multipoles

local moment

Figure 6: 2D representation of the operator setM. In 3D, there are 342 possible po-
sitions (green) relative to the central box (light brown). Since the nearest
neighbors (white) and self interactions are excluded, the number of active
operators reduces to 316.

erator setM for the well separation criterion w = 1. For each d = 1, ...,D the
set Md requires storing 343 pointers. A unique mapping function opindex(x, y, z)
returns a 1D index for each Md

j ∈Md, j = 0, ..., 343− 1, d = 1, ...,D with

x+ 3 + (y + 3)δ + (z + 3)δ2, (20)

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

54

where x = xω − xµ, y = yω − yµ, z = zω − zµ are the relative positions of ω and
µ in 3D and δ = 3 + 4σ. Here, σ denotes the number of directly interacting box
layers according to the well separation criterion. In PBC, any ωdj ∈ Ldi with
an out-of-box position is remapped from the corresponding periodic position with
the periodic remapping(·) function. Listing 3 shows a basic implementation of the

Listing 2: The loops that start the M2L operators in the octree traverse the whole
tree, compute the M2L interaction set and launch one M2L translation
for each interaction in the computed set (pseudocode).

1 // chosen tree depth D

2 //for each relevant depth

3 int d,muZ ,muY ,muX ,muXp ,muYp ,muZp

4 for(int d = 1; d <= D; ++d)

5 {

6 for(muZ=0; muZ <std::pow(2, d); ++muZ)

7 {

8 for(muY =0; muY <std::pow(2, d); ++muY)

9 {

10 for(muX=0; muX <std::pow(2, d); ++muX)

11 {

12 int muI = index(muX , muY , muZ , d);

13 // parent box of mu

14 muXp = muX /2;

15 muYp = muY /2;

16 muZp = muZ /2;

17 int omZ , omY , omX;

18 // operator index

19 int opI;

20 // computation of interaction lists

21 // based on the parent box information

22 for(omZ=(muZp -1)*2; omZ <(muZp +2)*2; ++omZ)

23 {

24 for(omY=(muYp -1)*2; omY <(muYp +2)*2; ++omY)

25 {

26 for(omX=(muXp -1)*2; omX <(muXp +2)*2; ++omX)

27 {

28 opI = opindex(omX -muX , omY -muY , omZ -muZ);

29 //remap out of bounds indices

30 periodic_remapping(omX , omY , omZ);

31 omegaI = index(omX , omY , omZ , d);

32 M2L(mu[muI], omega[omegaI], M[opI]);

M2L(·) function, which computes Eq. (15) up to order p in four nested for-loops.

3.3 Three CUDA parallelization approaches

The previous section described the basic sequential FMM. We will now present
three different parallelization approaches. Approach (i) is conceptually straight-

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

55

Listing 3: Basic implementation of the M2L operato (pseudocode).

1 typedef triangular_matrix Tm;

2 void M2L(Tm* mu , Tm* omega , Tm* M)

3 {

4 for (int l = 0; l <= p; ++l)

5 {

6 for (int m = 0; m <= l; ++m)

7 {

8 for (int j = 0; j <= p; ++j)

9 {

10 for (int k = -j; k < j; ++k)

11 {

12 mu(l,m) += M(j+l,k+m) * omega(j,k);

forward, nevertheless it achieves decent speedups compared to a sequential CPU
implementation with only minor parallelization work. It directly maps for-loops to
CUDA threads, leaving the sequential program structure nearly unmodified. Ap-
proach (ii) performs well for high accuracy demands (high multipole orders p & 12,
double precision), however it scales poorly for smaller p. Approach (iii) minimizes
the number of arithmetic operations by exploiting the symmetry of the M operator.
It scales well in the broad range 0 ≤ p ≤ 20, however it requires additional data
structures to minimize bookkeeping and to utilize symmetries.

3.3.1 Näıve parallelization approach (1)

The complete M2L operation in 3D requires 11 loops as shown in Listing 2. List-
ing 4 shows the comparison of the FMM loop structure and its näıve CUDA par-
allelization counterpart. Since CUDA provides a 3-component vector threadIdx to
control the parallel execution of the threads, the main idea is to map the loops di-
rectly to the CUDA structures. To this end, we use a transformation between 1D and
3D indices. Any sequence of n indices i = 0, .., n− 1 can be transformed into n m-
dimensional tuples of indices (x0, ..., xm−1) with xj = (i/mj) mod m, j = 0, ...,m−1.
As our FMM operates on cubic domains, the number of boxes is dim(d) in each or-
thogonal direction for depths d = 1, ..,D. The loop over the M2L interaction set
L is of a fixed size (6 × 6 × 6) on each depth d. The M2L operation contains four
for-loops of size ≤ p.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

56

Listing 4: Direct mapping of FMM octree and M2L loops (top part, lines 1–20) to
CUDA threads (bottom part, lines 22–43) (pseudocode).

1 *** M2L loops structure ***

2 //loop over depths

3 int d, muZ , muY , muX , omZ , omY ,omX

4 for (int d = 1; d <= D; ++d)

5 //three loops over tree boxes

6 for(muZ = 0; muZ < std::pow(2, d); ++muZ)

7 for(muY = 0; muY < std::pow(2, d); ++muY)

8 for(muX = 0; muX < std::pow(2, d); ++muX)

9 // computation of the M2L interaction lists

10 for(omZ=(muZ/2-1)*2;omZ <(muZ /2+2) *2;++ omZ)

11 for(omY=(muY/2-1)*2;omY <(muY /2+2) *2;++ omY)

12 for(omX=(muX/2-1)*2;omX <(muX /2+2) *2;++ omX)

13 //M2L operation

14 int l,m,j,k;

15 for(l = 0; l <= p; ++l)

16 for(m = 0; m <= l; ++m)

17 for(j = 0; j <= p; ++j)

18 for(k = -j; k < j; ++k)

19 //one complex multiplication

20 //and addition

21
22 *** CUDA M2L structure ***

23 //loop over tree levels d = 1,..,D on CPU

24 int dim = std::pow(2,d)

25 int p1 = p+1

26 // computation of the one -dimensional index i

27 int i = blockIdx.x * blockDim.x + threadIdx.x

28 // three loops over tree boxes on level d

29 int muZ = (i/(p1*p1*p1 *216* dim*dim))%dim

30 int muY = (i/(p1*p1*p1 *216* dim))%dim

31 int muX = (i/(p1*p1*p1 *216))%dim

32 // computation of the M2L interaction lists

33 int om_z = (i/(p1*p1*p1 *6*6))%6 - (muZ/2-1)*2

34 int om_y = (i/(p1*p1*p1*6))%6 - (muY/2-1)*2

35 int om_x = (i/(p1*p1*p1))%6 - (muX/2-1)*2

36 //M2L operation

37 int l = (i/(p1*p1))%p1

38 int m = (i/p1)%p1

39 if(m > l)

40 return;

41 int j = i%p1

42 for (int k = -j; k < j; ++k)

43 //one complex multiplication and addition

The iteration over the tree levels is performed by the CPU. Since the M2L opera-
tions are level independent, the kernels are spawned asymmetrically for each level of
the octree enabling overlapped execution. The last for-loop in Listing 3 is performed

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

57

sequentially by each thread. It accumulates partial sums

µlm(j) =

j∑

k=−j
Ml+j,m+kωjk, (21)

of the complete dot product

µlm =

p∑

j=0

j∑

k=−j
Ml+j,m+kωjk =

p∑

j=0

µlm(j). (22)

This reduces the number of atomic writes by a factor of O(p).

The näıve strategy allows a rapid FMM parallelization. Replacing the existing se-
rial FMM loops with the corresponding CUDA index calculations leads to speedups
that make the FMM algorithm applicable for moderate problem sizes. No additional
data structures and code modification are required. However, the achieved band-
width and parallelization efficiency is still far from optimal on the tested hardware.

3.3.2 CUDA dynamic parallelism approach (2)

A substantial performance issue of the näıve approach is integer calculation, which
introduces a significant overhead even for large p. For d = 1, ...,D, p3 × 216 × 8d

threads are started, where each computes a valid pair of 3D source and target
box indices to perform O(p) complex multiplications and additions µlm = µlm +
Ml+j,m+kωjk. This leads to O(p3) redundant source and target box index com-
putations. A possible mitigation of the expensive index computations is Dynamic
Parallelism [30]. It allows to spawn kernels recursively, what simplifies hierarchi-
cal calculations. The dynamic approach exploits Dynamic Parallelism to avoid the
expensive bookkeeping calculations of the näıve approach.

The determination of µdi for i = 0, ..., 8d and d = 1, ...,D is done on the host as
given in Listing 1. To this aim, the octree is traversed in 3D to precompute the
coordinates (xµ, yµ, zµ) of µdi and the origin coordinates (xL, yL, zL) of Ldi . Together
with 1D index i of µdi , they are passed as arguments to a parent kernel spawned
for each µdi . Let PdJ := {j0, ..., j7} be the set of indices of all boxes at depth d
contained in the parent box of ωdj . Thus, for an arbitrary µdi it holds: Ldi =

⋃25
J=0PdJ ,

PdJ ∩PdJ ′ = ∅, for any distinct pair J 6= J ′. Listing 5 shows the parent kernel, that is
engaged only in octree operations. To better utilize concurrency, it is started with
Bx = By = Bz = 3 for 6 × 6 × 6 interaction sets Ldi . The parent kernel consists
of threads that can be uniquely identified with (tidx, tidy, tidz) tuples. Each thread
precomputes one 3D source positions (xω, yω, zω) of ωdj0 , j0 ∈ PdJ , J = 0, ..., 25 (lines
4–6). The index j0 of the proper operator Md

j0→i is calculated from the relative 3D
coordinates of µdi and ωdj0 (line 12). Since the parent box index I of µdi contains
only its direct neighbors (PdI * Ldi), the direct neighbors in PdI are omitted. Fig. 7
illustrates the dynamic kernel. Each parent kernel spawns 26 child kernels with

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

58

Listing 5: Parent kernel in the dynamic approach. It determinates valid ω coor-
dinates and spawns child kernels performing M2L computations (pseu-
docode).

1 parent_kernel(int muI , int muX , int muY ,

2 int muZ , int xL , int yL , int zL ,...)

3 {

4 int omZ = threadIdx.z * 2 + zL;

5 int omY = threadIdx.y * 2 + yL;

6 int omX = threadIdx.x * 2 + xL;

7
8 if(muZ/2 != omZ/2 ||

9 muY/2 != omY/2 ||

10 muX/2 != omX/2)

11 {

12 // operator index

13 int opI;

14 opI = opindex(omX -muX , omY -muY , omZ -muZ);

15 periodic_remapping(omX , omY , omZ);

16 int omegaI = index(omX , omY , omZ);

17
18 dim3 block(p+1,p+2,1);

19 dim3 grid(2,2,2);

20 child_kernel(muI , omegaI , opI ,...);

21 }

22 }

Gx = Gy = Gz = 2 and 2D blocks Bx = p + 1, By = p + 2, Bz = 1. One child
kernel computes eight O(p4) M2L transformations between one target µdi and all ωdj ,
j ∈ PdJ .

Listing 6 shows child kernel computations, which can be divided in two parts. In
the first part, ωdj , j ∈ PdJ and the operator Md

j→i are determined. Since indices
of ω and M are provided by the parent kernel, the (2 × 2 × 2) grid facilitates a
straightforward way to determine eight different ωdj , j ∈ PdJ with j = j′ + Bidx +
Bidy ∗ dim(d) + Bidz ∗ dim(d)2, where j′ is the index passed by the parent kernel.
The operators Md

j are obtained correspondingly, by replacing dim(d) with 7 and j′

with the operator index passed by the parent kernel.

To decrease the number of global memory accesses, shared memory is used to
cache ω and M. This is advantageous, since one M2L operation executes O(p4) steps
onO(p2) data structures. The triangular shaped matrices are converted to 1D arrays
in shared memory, allowing consecutive addressing in the for-loops performing the
reduction step. The shared memory storage index si of each moment ωlm ∈ ωdj is
calculated with si = l2 + l + m, where l := tidy and m := tidx. A similar approach
holds for the operator Md

j , however, since M ∈ O(2p2), threads need to be reused
to write the elements into shared memory.

In our implementation, the direct neighbor operator is given the size p = 0. This

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

59

Figure 7: Dynamic M2L scheme. The CPU computes a µdi and the corresponding
Ldi . The parent kernel determines all valid PdJ (Ldi sets, whereas the child
kernel performs the M2L operations for ωdjk , jk ∈ PdJ , k = 0, ..., 7 and the
target µdi .

allows to skip the remaining nearest neighbor interactions of µdi for PdJ (Ldi by
checking for the condition p = 0.

In the second part, the j k reduction() function computes the M2L operation.
To mitigate the waste of threads due to the triangular shape of the µ, ω and M and
to minimize the number of atomic global memory writes, each thread executes the
two innermost loops, Eq. (22), sequentially. However, a straightforward approach
leads to warp divergence, since threads that correspond to m > l indices of the
target moments need to be skipped. Splitting the innermost loop, such that it is
partly performed by threads m > l circumvents this issue. Fig. 8 and Listing 7 show
a possible splitting scheme of the M2L operation. It uses (p + 1) ∗ (p + 2) threads,
where some unique thread pairs are mapped to the same target index tuple (l,m)
of a target element µlm ∈ µdi . These compute a distinct part of the reduction.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

60

Listing 6: Child kernel in the dynamic approach (pseudocode).

1 template <typename M2L ,typename OMEGA ,

2 typename MU>

3 void child_kernel(int muI , int omIstart ,

4 int opIstart ,

5 int opSize ,

6 M2L** M_Operator ,

7 OMEGA** Omega ,

8 MU** Mu)

9 {

10 int boxX = blockIdx.x;

11 int boxY = blockIdx.y;

12 int boxZ = blockIdx.z;

13
14 extern __shared__ complex_type cache [];

15 complex_type* shared_M=cache;

16 complex_type* shared_O =& cache[opSize];

17 //M2L operator

18 int opI = opIstart + boxZ *7*7 + boxY*7 + boxX;

19 M2L* M = M_Operator[opI];

20 // skipping nearest neighbor operations

21 if(M->p() == 0)

22 return;

23 // omega index

24 int omI;

25 omI = omIstart + boxZ * dim(d) * dim(d)

26 + boxY * dim(d) + boxX;

27 OMEGA* O = Omega[omI];

28
29 int m = threadIdx.x;

30 int l = threadIdx.y;

31 int tx = l*(p+1) + m;

32
33 if(tx < (p+1)*(p+1))

34 {

35 // writing of the moments and operators

36 //intto shared memory

37 shared_O[l*l+l+m] = O(l,m);

38 shared_M[l*l+l+m] = M(l,m);

39 }

40 __syncthreads ();

41
42 MU* mu = Mu[muI];

43 j_k_reduce(shared_O , shared_M , l, m, mu);

44 }

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

61

Listing 7: Reduction function. It computes new target indices ll,mm from argu-
ments l,m in a way that innermost loop is split to be performed by all
threads in the block (pseudocode).

1 void j_k_reduce(complex_type& shared_O ,

2 complex_type& shared_M ,

3 int l, int m, MU* mu)

4 {

5 int l1 , t1 , ll , mm , f, f1 , k_start , k_end;

6 t1 = tx - l;

7 l1 = t1/p_out;

8 //f = 0,1

9 f = 1 - l - l1;

10 f1 = 1 - f;

11 ll = f1 * l1 + f * m;

12 mm = f1 * m + f * l1;

13
14 complex_type mu_l_m = 0.0;

15 complex_type mu_l_m_j , op , om;

16 for (int j = 0; j <= p; j++)

17 {

18 mu_l_m_j = 0.0;

19
20 int jl = j + ll;

21 int jl2_jl_m = jl * jl + jl + mm;

22 int jj2_j = j * j + j;

23
24 for (int k = f * j; k <= f * j + j + f; k++)

25 {

26 int lk = k - j;

27 op = shared_M[jl2_jl_m + lk]);

28 om = shared_O[jj2_j + lk]);

29 mu_l_m_j += op * om;

30 }

31 // changing sign in the odd j-th element

32 mu_l_m += change_sign_if_odd_j(j, mu_l_m_j);

33 }

34 // atomic add on global memory

35 *mu(ll , mm) += mu_l_m;

36 }

The described dynamic approach allows for further optimization, as it splits the
computation in two independent parts. The parent kernels handle the octree po-
sition evaluation, whereas the child kernels implement the M2L computation. The
efficiency of the this approach is satisfactory for high multipole orders. The necessity
of an efficient parallelization also for small p leads to the next approach.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

62

Figure 8: Thread splitting scheme to minimize warp divergence. Example of 12
threads performing six reductions. Threads are allocated in a 2D block.
Each target (l,m) is shared by two threads (same color) performing a
different part of the dot product.

3.3.3 Presorted list-based approach with symmetric operators (3)

In this approach, the FMM interaction pattern is precomputed for higher effi-
ciency. Additionally, operator symmetries are exploited to reduce both the number
of complex multiplications as well as global memory access.

Octree interactions precomputation

The pattern of interactions between the octree boxes is static, hence it can be
precomputed and stored. This step does not need to be performance-optimal, as it
is done only once at the start of a simulation that typically spans millions of time
steps. In a PBC octree configuration, for each ωdi , d = 1, ...,D, i = 0, ..., 8d − 1
there exists an interaction set Rd

i , |Rd
i | = 208. It consists of all the indices j of

local moments µdj that a multipole ωdi is contributing to. Note that the index sets
Rd
i and Ldi (defined in Section The Multipole-to-Local (M2L) transformation) are

identical. For higher efficiency, the sets Rd
i are precalculated and stored as lists

R̂d
i = (j0, ..., j188) (with nearest neighbors skipped) with an arbitrary but fixed

order. In addition, the corresponding operators are determined and stored as lists
M̂d

i ordered in a way that

µjk = Mjkωi, k = 0, ..., 188 (23)

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

63

describes all valid M2L transformations of the i-th multipole moment. The precal-
culation of R̂d

i and M̂d
i is achieved by sequentially traversing the octree as shown in

Listings 1–2. Within the omega class, each ωi stores 189 pointers to its targets µjk
and the corresponding pointers to M2L operators. We make sure that the internal
list orders preserve the validity of Eq. (23), so that it suffices to store direct pointers
to the target moments and operators instead of their indices. We will use the index
list notation R̂d

i and M̂d
i , keeping in mind that the lists actually store pointers.

The precomputed interaction lists R̂d
i and M̂d

i enable the following kernel con-
figuration. The number of distinct M2L transformations for each ωdi is set with
Gz = 189. Gx = Gy = p , thus O(p2) CUDA blocks are spawned to handle
O(p4) interactions. The remaining O(p2) operations are executed sequentially by
each thread. Bx = 8d−1 is the number of boxes on octree level d − 1. This value
fits CUDA architecture requirements for the blocksize particularly well, as it is
always an even multiple of warpsize. For d > 4, Bx exceeds the the largest allowed
blocksize of 1024, so we replicate kernel launches for consecutive ω in strides of
size 1024.

local moment

multipoleω

μ

M2L operation

non-existent op.

ω

ωω

ω

Figure 9: Different operator groups. The groups are represented by arrows of distinct
color, depend on the position of ω within its parent (red squares). Four
possible 2D operator groups Gs are shown. In 3D, there are eight different
operator groups.

Fig. 9 illustrates that for each position of ωdi within its parent box a specific
interaction set Rd

i results. Therefore, the precomputed lists R̂d
i and M̂d

i require
reshuffling to facilitate the straightforward indexing within the kernel. Let Gs, s =

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

64

0, ..., 7 denote the eight possible groups governed by the position of ω within the
parent box. The 8d pointers to ω are reshuffled such that eight consecutive sequences
of 8d−1 pointers in memory belong to the same group Gs. Rigorously, for ωdi where
d = 1, ...,D and i = 0, ..., 8d it holds ωdik ∈ Gs, k = s8d−1, ..., (s+1)8d−1−1, s = 0, ..., 7.

local moment M2Lmultipoleω μ

Figure 10: Parallelization of M2L operations for the operator groups shown in Fig. 9.
Each single operator is processed in parallel for all boxes on a level by
starting one CUDA block for each ωi ∈ Gs (arrows of same color show
one example for each operator group). The kernels are replicated for
s = 0, ..., 7.

With reshuffled ω pointers the CUDA parallelization proceeds as shown in Fig. 10.
One kernel is started for each Gs, s = 0, ..., 7. Each thread tidx within a block

evaluates one dot product (Eq. (22)). The pointers to the targets µdjk and to Md
jk

are

accessed with precomputed and presorted lists R̂d
i and M̂d

i without any additional
integer operation, hence Bidz ≡ jk. The particular moments (µlm)djk , jk ∈ Gs are
evaluated in a parallel CUDA block with l = Bidx and m = Bidy. As these are
block variables, skipping of the m > l part does not lead to warp divergence.
Additionally, only the relevant part of the triangular operator matrix (Fig. 5) needs
to be loaded into shared memory to be accessed by all threads tidx within the block.

A further improvement of the kernel is gained by rearranging the moments in
memory. Threads tidx of an l,m block access the same moments ωlm of consecutive
ωi, with i = tidx. For warpwise coalesced memory access, the arrangement of the
moments in memory is switched from Array of Structures (AoS) to Structure of
Arrays (SoA). The moments (ωlm)di , i = 0, ..., 8d − 1 are stored in SoA triangular
matrices such that for fixed l,m, the i indexed elements are contiguous in memory.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

65

Operator symmetry

The symmetry of associated Legendre polynomials

Plm(−x) = (−1)l+mPlm(x) (24)

emerges directly from their definition (Eqs.5–6). It allows to reduce the size of the
operator set Md, as shown in Fig. 11. In 3D, the complete operator set spans a

local moment M2L op.multipoleω μ

ω ω

Figure 11: Reduction of the M2L operator set. The complete operator setMd (left)
and a reduced operator set M̃d ⊆ Md (right) in 2D. Each black arrow
symbolizes one M2L operator.

cube with the operators originating from its center to all 73 − 33 subcubes. The
reduced operator M̃d contains 56 M2L operators ωi → µjx (x = 0, ..., 55) of one of
the octants. Let the octant of the cube with parameters θ, φ ∈ [0, 1

2
π] in spherical

coordinates be the reference octant. The generation of particular operator moments
with symmetrical functions

Mlm =
(l −m)!

‖x‖l+1
2

Plm(cos θ)eimφ, (25)

where

eimφ = cos(mφ) + i sin(mφ) (26)

yields three operator symmetry groups containing orthogonal operators that differ
only by their sign. Fig. 12 shows the symmetry groups in M̃d.

Depending on the relative position of ωi in its parent box, the interaction set
Ri requires a different subset of operators in M, see Fig. 9. Hence, for each Gs,
s = 0, ..., 7 on each depth d = 0, ...,D, the operator set Md and the corresponding

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

66

z

x
y

Figure 12: Grouping of the M2L operators according to their symmetry properties.
The reduced operator set as shown in black in the upper left panel (a 2D
version is shown in the right panel of Fig. 11) is sorted into three groups
(red, blue, green) depending on whether the operator is aligned with an
axis (red), or within one of the xy, xz, or yz planes (blue), or none of
that (green). Each of the red operators (in x, y, and z direction) has one
symmetrical counterpart (in −x, −y, and −z direction, respectively).
Each of the blue operators has four symmetrical counterparts each (one
in each quadrant of the plane). Each of the remaining operators has eight
symmetrical counterparts each (one in each octant of the cube).

index set I = {0, ...188} can be split in disjunct subsets T such that

Tα1 = {Mj | @ Mi ∈M : abs(Mi)

= abs(Mj) ∀j ∈ I }
Tα2 = {Mi0 ,Mi1 | abs(Mix)

= abs(Miy) ∀x, y ∈ {0, 1}}
Tα3 = {Mi0 , ...,Mi3 | abs(Mix)

= abs(Miy) ∀x, y ∈ {0, 1, 2, 3}}
Tα4 = {Mi0 , ...,Mi7 | abs(Mix)

= abs(Miy) ∀x, y ∈ {0, 1, 2, 3, 4, 5, 6, 7}}

(27)

where abs(X) := abs(Xl,m) , l = 0, ..., p,m = −l, ..., l and α1 = (0, ..., 6), α2 =
(7, ..., 27), α3 = (28, ..., 48), α4 = (49, ..., 55). This property allows to reduce the
Gz = 189 to Gz = 56, however further kernel modifications are required.

To make efficient usage of the operator symmetry, the lists M̂d
i for each ωi are

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

67

again reordered such that

M̂d
i = (Tα1 , Tα2 , Tα3 , Tα4). (28)

The corresponding lists R̂i need to be resorted as well, to preserve Eq. (23). A
bitset B is added to the M operator class to store signs of its elements. As these
are complex values, it takes two bits to store the signs. The bitset is indexed in an
array like manner with the most significant bit as the zero-th element. With u =
2(l2 + l) + 2m, B(u) and B(u+ 1) represents the sign of the real and complex part of
Mlm, respectively. Since bitsets are precomputed during the operator initialization
phase, they do not introduce any performance degradation whereas their additional
memory footprint is negligible. Fig. 13 shows an example of an M2L computation
with bitsets. A single operator access from global memory computes 1, 2, 4, or
8 target moments µ depending on the operator type T as given in Eq. (27). The

Mi1
Mi4

Mi3 Mi2

μi4
μi1

μi2

μi3

Mi1
Bi4

Bi3 Bi2

μi4
μi1

μi2

μi3

ω ω

local moment M2L op.multipoleω μ

Figure 13: M2L operator symmetry exploitation. Left: Computation of four M2L
operations with four orthogonal operators M (black arrows). Right: The
use of bitsets B (orange) minimizes the redundant memory accesses and
reduces the number of complex multiplications.

target moments µtγ , with γ = 0, ..., β, β = 1, 2, 4, 8 for any source ω are computed
as follows. The intermediate products µlm,jk := Ml+j,m+k ωjk of the complete dot
product Eq. (22) are split in

ac = <(Ml+j,m+k)<(ωjk)

bd = =(Ml+j,m+k)=(ωjk)

ad = <(Ml+j,m+k)=(ωjk)

bc = =(Ml+j,m+k)<(ωjk)

(29)

where Ml+j,m+k are the elements of the reference operator Mt0 . The split products

change their signs for (µlm,jk)tγ , γ 6= 0 according to B̂tγ = Btγ ⊕ Bt0 , where Bt0 is
the bitset of the reference operator, ⊕ is the binary XOR operator and γ = 0, ..., β,
β = 0, 2, 4, 8 depending on the operator symmetry group Tαx , x = 1, 2, 3, 4. For x =
1 there is no symmetric counterpart of the operator M. For x > 1 the intermediate

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

68

moments calculation is

(µlm,jk)tγ = sign(ac, B̂tγ , u)− sign(bd, B̂tγ , u+ 1)

+i(sign(ad, B̂tγ , u) + sign(bc, B̂tγ , u+ 1)),
(30)

with

sign(x, B̂, u) =

{
x, if B̂(u) = 0

−x, if B̂(u) = 1.
(31)

The sign function changes the sign of x by shifting the u-th bit of the bitset B̂
to the left most bit position and by evaluating the x ⊕ B̂shifted subsequently. This
creates no warp divergence since the sign change is a result of the arithmetic and
logical operations.

The constant size of the lists, see Eq. (28), allows to implement the M2L kernel for
the symmetry groups Tαx , x = 1, 2, 3, 4 as a function template, resulting in a single
kernel that efficiently treats different groups Tαx . Listing 8 shows the kernel config-
uration for different symmetry groups. For different operator groups Gs, s = 0, ..., 7,
the kernels are replicated. The computation of the index i of ωi is straightforward as
pointers to ωi are contiguous for any Gs. For each symmetry group Tαx , x = 1, 2, 3, 4
one kernel with distinct template parameters is started, where the first parameter
describes the cumulative offset of a particular Tαx in M̂d

i and the second one is the
number of symmetrical operators within the current Tαx . The size of αx, x = 1, 2, 3, 4
is set to Gz. The kernels are launched for all configurations Tαx×Gs asymmetrically
to utilize concurrency. Listing 9 shows the implementation of the symmetric kernel.

Listing 8: Configuration and launches of the symmetric M2L kernel (pseudocode).

1 #define STREAMS 32

2 dim3 b(boxes_on_this_depth /8,1,1);

3 // multipoleorder p

4 dim3 g1(p,p,7);

5 dim3 g2(p,p,21);

6 dim3 g3(p,p,21);

7 dim3 g4(p,p,7);

8 int k = 0;

9 for (int s = 0; s < 8; ++s)

10 {

11 M2L_symmetric <0,1>

12 <<<g1,b,sm_size ,stream [++k%STREAMS]>>>(s ,...);

13 M2L_symmetric <7,2>

14 <<<g2,b,sm_size ,stream [++k%STREAMS]>>>(s ,...);

15 M2L_symmetric <49,4>

16 <<<g3,b,sm_size ,stream [++k%STREAMS]>>>(s ,...);

17 M2L_symmetric <133,8>

18 <<<g4,b,sm_size ,stream [++k%STREAMS]>>>(s ,...);

19 }

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

69

At the beginning, the reference operator Mt0 and the bitsets of all orthogonal oper-
ators Btγ are loaded into shared memory. Depending on the group Tαx , x = 1, 2, 3, 4
different number of bitsets is loaded. The if statement, that tests the value of the
template parameter group type, is resolved at compile time. The second part of
Listing 9 shows the split complex multiplication implementation. The double nested
for-loop computes 1, 2, 4 or 8 (µlm)tγ depending on the symmetry group Tαx . The
if statement within the innermost loop is resolved at compile time as well.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

70

Listing 9: The symmetrical M2L kernel (pseudocode).

1 template <typename offset , typename group_type ,

2 typename Real >

3 M2L_symmetric(int s, int p, int d, Operators* B,

4 Omegas* Omega){

5
6 int l = blockIdx.x;

7 int m = blockIdx.y;

8 int B_id = offset + blockIdx.z * group_index;

9 int omega_offset = s*blockDim.x + nb(d-1);

10 // shared memory alloc

11 unsigned int* bits0 ,bits1 ,bits2 ,bits3 ,

12 bits4 ,bitsb5 ,bits6 ,bits7;

13 complex* B0;

14 // global memory accesses and shared memory writes

15 if(threadIdx.x == 0)

16 bits0 = B[B_id]->bitset;

17 for(int j = 0; j <= p; ++j)

18 for(int k = -j; k <= j; ++k)

19 B0[(j*(j+1) + k] = B[B_id](l+j,m+k);

20 if(group_type > 1)

21 bits1 = B_list[B_id+1]->bitset^bits0;

22 if(group_type > 2)

23 bits2 = B_list[B_id+2]->bitset^bits0;

24 bits3 = B_list[B_id+3]->bitset^bits0;

25 if(group_type > 4)

26 bits2 = B_list[B_id+4]->bitset^bits0;

27 bits3 = B_list[B_id+5]->bitset^bits0;

28 bits2 = B_list[B_id+6]->bitset^bits0;

29 bits3 = B_list[B_id+7]->bitset^bits0;

30 Real ac ,bd ,ad ,bc;

31 complex mu_lm0 , mu_lm1 , mu_lm2 ,...

32 for(int j = 0; j <= p; ++j)

33 for(int k = -j; k <= j; ++k)

34 int u = 2*j*(j+1) + 2*k;

35 O_jk=Omega(j,k,omega_offset+threadIdx.x);

36 B_jk=B0[(j*(j+1) + k];

37 ac = O_jk.real*B_jk.real;

38 bd = O_jk.imag*B_jk.imag;

39 ad = O_jk.real*B_jk.imag;

40 bc = O_jk.imag*B_jk.real;

41 mu_lm0 += complex(ac -bd ,ad+bc);

42 if(group_type > 1)

43 mu_lm1 += complex(sign(ac ,bits1 ,u)-sign(bd ,bits1 ,u+1)

44 ,

45 sign(ad,bits1 ,u)+sign(bc ,bits1 ,u+1)

46);

47 if(group_type > 2)

48 mu_lm2 += complex(sign(ac ,bits2 ,u)-sign(bd ,bits2 ,u+1)

49 ,

50 sign(ad,bits2 ,u)+sign(bc ,bits2 ,u+1)

51);

52 mu_lm3 += ...

53 if(group_type > 4)

54 mu_lm4 += ...

55 mu_lm5 += ...

56 mu_lm6 += ...

57 mu_lm7 += ...

58 }

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

71

4 Benchmarks and discussion

We will now benchmark the performance and analyze the scaling behavior of the
three different parallelization approaches described above.

4.1 General FMM scaling behavior

Number of particles N

T
im

e

f (N) ∝ N 2

f (N) ∝ N
f (N) ∝ N log(N)

Figure 14: Qualitative sketch of the FMM scaling behavior. The optimal linear
scaling (black dashes) with particle number N is achieved if and only if
the tree depth D (as indicated by the colored numbers) is properly chosen
for each N . For a constant D, for small N , FMM run time is dominated
by the far field computations, whereas for growing N , ultimately O(N2)
scaling results (red dashes).

Fig. 14 sketches the FMM scaling behavior with respect to the number of particles
N , which is O(N) when the tree depth D is chosen properly. However, locally the
FMM scales like O(n2), with n being the average number of particles in the boxes at
the lowest level D. For a fixed multipole order p, at constant depth, a fixed number
of O(p4) far field operations are performed. In the regime of small N , the O(p4)
far field part completely dominates the FMM runtime, which is therefore essentially
independent of N . At some critical N , the scaling curve switches to a quadratic
behavior, because the P2P computations start to dominate the overall runtime. To
benefit from the optimal linear scaling for growing N , the depth needs to be chosen
properly. Varying p affects the slope of the overall linear scaling.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

72

4.2 Benchmarking procedure

All performance tests were executed on a workstation with an Intel Xeon CPU E5-
1620@3.60 GHz with 16 GB physical memory and a Pascal NVIDIA GeForce GTX
1080 Ti with 3584 CUDA Cores. This GPU has a theoretical single precision peak
performance of 11.6 TFLOPS and maximal bandwidth of 484 GB/s. The device
code was compiled with NVCC 9.1. All kernel timings were measured with the help
of cudaEvents and represent the average runtime of 100 runs.

In our performance comparisons we focus on D = 3, as it provides sufficient
parallelism to get proper performance metrics, which are also valid for D = 4. For
higher depths, the computation requires more kernel spawns due to limitations of
blocksize, which leads to performance decrease. On the tested GTX 1080 Ti GPU
a depth of D = 3 is suitable for particle counts of 4×104 – 3×105, whereas higher N
requires D = 4 and D = 5 for optimum performance. The current implementation
of the symmetric parallelization approach allows for a maximum depth of D = 5 at
which up to N ≈ 1.2 × 106 particles can be handled efficiently. The limitation is
caused by memory optimization, in which redundant pointers are stored to minimize
the costs of scattered global memory writes. It can be switched off allowing forD = 6
and system sizes up to N ≈ 108. On the tested Pascal GPU this optimization
increases performance by about 10%, while on a Turing GPU the effect of the
optimization is negligible [32].

4.3 Microbenchmarking

To evaluate the different parallelization approaches in context of the underlying
hardware, we estimated the GPU performance bounds for the M2L transformation
operation. To this aim, we implemented two benchmarking microkernels, which
execute exactly the number of arithmetic operations and memory accesses as the
M2L operation does. However, additional possible performance bottlenecks [41] like
warp divergence, non coalesced memory accesses, shared memory bank conflicts
and atomic writes are eliminated. The microkernels were then used to determine
the effective runtime bounds for our three different parallelization approaches.

Fig. 15 shows the absolute runtimes of the microkernels. To get the maximal
theoretical throughput of the M2L kernel, we assumed the execution of three global
memory accesses, eight bytes each, to perform one complex multiplication and one
global addition, i.e. O(p4) memory accesses for O(p4) arithmetic operations. This
results in a clearly memory bound kernel with O(p4) scaling in the examined range
of p. For the lower bound we assumed an idealized scenario: for each box in the oc-
tree, O(p2) memory accesses are performed for the moments and operators, whereas
the data needed for O(p4) operations is assumed to be available in registers. The full
O(p4) memory access approach utilizes nearly the full bandwidth of the GPU, achiev-
ing 370 Gb/s. However, the computation performance is only about 89 GFLOPS,
which is ≈ 0.8% of the GPU’s peak performance. The second, O(p2) memory access

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

73

1 2 4 8 16
multipole order p

2−12

2−8

2−4

20

24

tim
e

(s
)

memory access
memory access

Figure 15: Runtime of the memory-bound microkernel (orange) and of the compute-
bound microkernel (green) for two tree depths D = 3 and D = 4, as
indicated by the encircled numbers. The run times of the implemented
M2L kernels are expected in the shaded area between memory-bound and
compute-bound microkernels.

approach, varies depending on p. For p < 10 we observe subquadratic scaling of the
execution time, indicating that the O(p4) arithmetic operations are fully hidden.
For p > 10 the curve shifts to the O(p4) regime, achieving up to 8 TFLOPS, i.e.
70% of the GPU’s peak performance. Compute and memory utilization are balanced
at p = 10, which is where the curve switches from O(p2) to the O(p4) slope.

4.4 Performance comparison

We will now discuss the efficiency of the three proposed parallelization approaches.

4.4.1 Näıve kernel

Fig. 16 shows the absolute executions times of the different kernels for D = 3
and D = 4. In the whole p range, the näıve kernel’s theoretical arithmetic intensity
(see Roofline model [57]), is a lot smaller than the ratio R = 23.95 FLOPS/byte
obtained from the GPU’s FLOP rate (11.6 TFLOPS) divided by its memory transfer
rate (484 GB/s). This indicates that the kernel is bandwidth limited. However,
additional integer computation is required for the calculation of 3D octree indices of
the interaction sets L. Fig. 18a shows that for the näıve kernel, much less than 10%
of the issued instructions are useful floating point operations. A large computational

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

74

0 5 10 15 20
multipole order p

10−4

10−3

10−2

10−1

100
tim

e
(s

)

depth 3

symmetric

dynamic

naive

10−3

10−1

101

tim
e

(s
)

0 5 10 15 20
multipole order p

symmetric

dynamic

naive

depth 4

Figure 16: Runtime comparison of the three different M2L implementations. For
each multipole order, 8D × 189 single M2L operations are computed for
D = 3 (left) and D = 4 (right). The gray area marks the gap between
the memory bound and the compute bound reference microkernel shown
in Fig. 15.

overhead emerges from a high number of integer operations in the innermost for-
loop. Here, each of O(p) complex multiplications requires 31 integer additions, 16
integer multiplications, nine modulo operations and 11 integer divisions. In addition,
performance is significantly reduced by warp divergence, since different threads in
a block resolve the condition m > l (line 36 of Listing 4). This effect is labeled
as no operation in Fig. 18a. Avoiding warp divergence would require different
kernels for each 0 ≤ p ≤ 20, since mapping of indices to threads differs at each p.
Fig. 18b shows, how well the GPU is utilized by the näıve kernel. As both memory
and compute achieve roughly 50% of maximal possible utilization, the performance
is likely limited by the latency of arithmetic or memory operations.

The maximum number of achieved FLOPS (p=19) is at 2% of the GPU capability,
see Fig. 17 (left). The effective bandwidth reaches nearly 500 GB/s, which is more
than the maximum memory throughput of the GPU. As seen in Fig. 16, the näıve
kernel achieves runtimes similar to the memory bound microkernel. For values p > 6,
the kernel is slightly faster than the memory-bound reference kernel, and that is for
the following reason. The fact that the innermost for-loop of the näıve kernel is
executed sequentially allows cache reuse. Each element ωlm can be reused 189 times
for a different M2L transformation and each element of the operator M is reused 8d

times at tree depth d. This leads to local cache throughput of roughly 3,500 GB/s,
which approaches the maximal theoretically possible cache bandwidth of the GPU.

Additionally, the achieved occupancy per each Streaming Multiprocessor (SM) is
at 46% of a possible maximum of 50% at this kernel configuration, a limit caused
by the number of registers (64) used in the kernel.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

75

0

500

1000

1500

G
FL

O
P

S

symmetric
dynamic

naive

0 5 10 15 20
multipole order p

0.7

ra
tio

global memory

shared memory

floating point
operations

0 5 10 15 20
multipole order p

0.6

0.5

Figure 17: M2L kernel performance comparison by two different metrics. Left:
FLOPS achieved by different kernels. Right: Ratio of global and shared
memory accesses and floating point operations for the symmetric kernel
with respect to the non-symmetric approach.

4.4.2 Dynamic kernel

This kernel utilizes Dynamic Parallelism to minimize the index overhead compu-
tation introduced by the näıve kernel. The sizes of the child kernels (2, 2, 2) allow
for utilization of concurrency on the GPU, since the work in the child kernels is fully
independent. On the underlying hardware the maximum number of resident grids
per device is limited to 32.

Fig. 19a shows the relative costs emerging from launching the child kernels, which
become irrelevant only for large p. At small p, the latencies dominate the compu-
tation time, leading to an almost constant runtime for p ≤ 10 that can be seen
in Fig. 16 for the dynamic kernel. Fig. 19b shows the instruction distribution for
the dynamic kernel. From p ≈ 3 on, the fraction of floating point operations is
significantly larger than for the näıve kernel. However, the large number of integer
operations and warp divergence still limits the performance. Another issue is the
small block size of the child kernels, which limits the SM occupancy for different p
values. For p < 5, e.g., each block consists of only one warp. This limits the SM
utilization, as 32 blocks but 64 warps can be executed simultaneously. For p ≥ 5,
the occupancy is only limited by the register usage, achieving nearly 100% of the
theoretical possible occupancy. Limiting the register usage, however, increases the
local memory traffic and does not further enhance the performance.

As shared memory usage is an essential part of the dynamic kernel, we tested
how its utilization affects the overall performance. Fig. 20a and Fig. 20b show the
shared memory throughput and the GPU utilization of the dynamic kernel, respec-
tively. For p < 12 the kernel is clearly compute-bound, hence the shared memory

operations are fully hidden. At p = 12–15 we can observe a balance between mem-
ory and compute operations. Shared memory is limiting only for p > 15, however

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

76

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0

20

40

60

80

100
In

st
ru

ct
io

n
co

un
t

(%
) floating point

integer
memory
no operation

(a) Instructions distribution.

0.0

0.2

0.4

0.6

0.8

1.0

U
til

iz
at

io
n

compute
memory

0 2 4 6 8 10 12 14 16 18 20
multipole order p

(b) Memory and compute utilization.

Figure 18: Performance analysis of the näıve M2L kernel.

0.0

0.2

0.4

0.6

0.8

co
st

s
fr

ac
tio

n

0 2 4 6 8 10 12 14 16 18 20
multipole order p

(a) Kernel launching latencies.

floating point
integer
memory
no operation

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0

20

40

60

80

100
In

st
ru

ct
io

n
co

un
t

(%
)

(b) Instructions distribution.

Figure 19: Performance analysis of the dynamic M2L kernel.

the achieved throughput of 6,000 GB/s is at the limit of the underlying GPU.

The overall performance of the kernel gets considerably higher compared to the
näıve kernel for p > 6, achieving a maximum of 1,600 GFLOPS for p = 20, see Fig. 17
(left). Nevertheless, memory and FLOPS peaks are achieved only for p > 15. At
p < 5, the dynamic kernel performs worse than the O(p4) benchmarking microkernel
mainly due to kernel launch latencies mentioned above.

4.4.3 Symmetric kernel

The symmetric M2L kernel is composed of four subkernels started asynchronously
for each symmetry group Tαx , x = 2, 3, 4 (see Eq. (27)). Fig. 21 shows the achieved
speedup compared to the standard implementation. Additionally, it also shows the
speedups of each symmetric part Tαx . As expected, the 8-way symmetric kernel

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

77

0 5 10 15 20
multipole order p

0

2000

4000

6000
G

B
/s

(a) Shared memory throughput.

shared memory
compute

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0.0

0.2

0.4

0.6

0.8

1.0

U
til

iz
at

io
n

(b) Shared memory and compute utiliza-
tion.

Figure 20: Performance analysis of the dynamic M2L kernel.

performs best, followed by the 4-way and then the 2-way symmetric kernel. The
overall speedup of the symmetric kernel combines the speedups of the subkernels.
However, the achieved overall speedup is not directly proportional to the number of
the symmetrical counterparts, because the additional bit shifting and sign changing
operations introduce a growing overhead for larger symmetry. In addition, register
utilization is larger for the kernels with higher symmetry, harming the achieved SM
occupancy. From here on, we will combine the metrics for all subkernels, referring

0 5 10 15 20
multipole order p

0.8

1.0

1.2

1.4

1.6

sp
ee

d
up

2-way symmteric
4-way symmteric
8-way symmteric
full M2L symmetric

Figure 21: Speedups due to symmetry properties for different symmetry groups Tαx ,
x = 2, 3, 4 (colored) and for the whole symmetric M2L operator kernel
(black) compared to a non-symmetric implementation (cyan).

to them as one symmetric kernel. These metrics take into account the overlapping
execution of the symmetric subkernels.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

78

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0.0

0.2

0.4

0.6

0.8

1.0
U

til
iz

at
io

n
shared memory
memory
compute

(a) Hardware utilization.

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0

20

40

60

80

100

In
st

ru
ct

io
n

co
un

t
(%

)

floating point
integer
memory
no operation

(b) Instructions distribution.

Figure 22: Performance analysis of the symmetric M2L kernel.

Fig. 22a shows how the hardware is utilized by the symmetric kernel. This kernel
is compute-bound over nearly the complete p range. As seen in Fig. 22b, the fraction
of floating point operations is significantly larger than in both previous approaches.
Warp divergence is eliminated completely. The no operation part, resulting from
pipeline latencies becomes negligible for p > 6. In this range, the gridsizes ((p +
1)∗(p+2)/2, 7, 1) and ((p+1)∗(p+2)/2, 21, 1) of particular symmetric subkernels are
too small to provide enough blocks to utilize the complete device, so that pipeline
latencies become an issue. However, with larger p hardware utilization increases.

The register usage of the symmetric subkernels varies between 48% and 71% (not
shown). Based on the kernel configuration, the theoretical maximum possible av-
erage SM occupancy for all subkernels is 57%. The kernels achieve 50% and are
mainly limited by register usage. Further occupancy optimization is unlikely to fur-
ther increase performance markedly, as kernels with a large register usage do not
require optimal occupancy [55].

As Fig. 17 (left) shows, the FLOP rate of the symmetric kernel is much higher in
the range 1 < p < 16 compared to the other two kernels. However, the FLOP rates
achieved by the symmetric and dynamical kernel for p ≥ 15 are similar. Nevertheless,
the symmetric scheme clearly outperforms the dynamic one when comparing the
absolute execution times, see Fig. 16. Fig. 17 (right) demonstrates that, compared to
the non-symmetric kernel, the symmetric kernel needs fewer floating point operations
for the M2L stage.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

79

0 5 10 15 20
multipole order p

0.2

0.4

0.6

0.8

p
er

fo
rm

an
ce

ra
ti

o

D =3
D =4

Figure 23: Absolute performance ratio of the symmetric M2L kernel with respect to
the compute-bound reference microkernel with O(p2) memory loads for
D = 3 and D = 4.

Fig. 23 shows the absolute performance ratio of the symmetric kernel compared to
the compute-bound reference microkernel. It achieves roughly 30% of the reference
microkernel performance in 2 < p < 21. Additionally, for both depths, the kernel
shows an ideal scaling as the showed ratio remains nearly constant for p > 5. Hence,
the scaling of the symmetric kernel follows the compute-bound reference microkernel
scaling. It achieves a subquadratic scaling for p < 10 and switches slowly to O(p4)
regime, that is limited only by arithmetic throughput, compare Fig. 15 and Fig. 16.

5 Conclusions

Here, we have presented three different CUDA parallelization approaches for the
Multipole-to-Local operator, which is performance limiting for the overall FMM
performance. The first approach preserves the sequential loop structure and does
not require any special data structures. It makes use of CUDA Unified Memory
to achieve decent speedups compared to a sequential CPU implementation. It is
useful, e.g., for rapid prototyping or for simulation systems with small to moderate
numbers of particles. However, it comes with a large computational overhead due
to additional integer operations.

The second approach, which exploits CUDA Dynamic Parallelism, avoids this
drawback and achieves very good performance at high accuracy demands, i.e. for
large multipole orders. Its main drawback is a lack of performance at low multipole
orders, for which the first scheme performs better.

The third approach uses abstractions of the underlying octree and interaction pat-

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

80

terns to allow for enhanced, efficient GPU utilization and it exploits the symmetries
of the Multipole-to-Local operator. As a result, it scales perfectly with growing
multipole order p maintaining a very good performance in the whole benchmarked
multipole range (0 < p < 20)

Our FMM implementation has been optimized for biomolecular simulations and
has been incorporated into GROMACS as an alternative to the established PME
Coulomb solver [32]. We anticipate that, thanks to the inherently parallel struc-
ture of the FMM, future multi-node multi-GPU implementations will eventually
overcome the PME scaling bottlenecks [9, 35, 36].

Acknowledgements

This project was supported by the DFG priority programme Software for Exascale
Computing (SPP 1648). A special thanks goes to Jiri Kraus from NVIDIA who
supported this project in the early stage of its development and to R. Thomas
Ullmann who took part in writing the FMM-GROMACS interface and unit tests.

References

[1] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lin-
dahl. GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX, pages 19–25, 2015.

[2] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi.
Task-based FMM for heterogeneous architectures. Concurrency and Computa-
tion: Practice and Experience, 28(9):2608–2629, 2016.

[3] M. Allen and D. Tildesley. Computer simulation of liquids. 1987. New York:
Oxford, 385, 1989.

[4] Y. Andoh, N. Yoshii, K. Fujimoto, K. Mizutani, H. Kojima, A. Yamada,
S. Okazaki, K. Kawaguchi, H. Nagao, K. Iwahashi, F. Mizutani, K. Minami,
S. Ichikawa, H. Komatsu, S. Ishizuki, Y. Takeda, and M. Fukushima. MODY-
LAS: A Highly Parallelized General-Purpose Molecular Dynamics Simulation
Program for Large-Scale Systems with Long-Range Forces Calculated by Fast
Multipole Method (FMM) and Highly Scalable Fine-Grained New Parallel Pro-
cessing Algorithms. J. Chem. Theory Comput., 9(7):3201–3209, 2013.

[5] Y. Andoh, N. Yoshii, and S. Okazaki. Extension of the fast multipole method
for the rectangular cells with an anisotropic partition tree structure. J. Comput.
Chem., pages 1–15, 2020.

[6] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann,

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

81

M. Pippig, D. Potts, and G. Sutmann. Comparison of scalable fast methods
for long-range interactions. Phys. Rev. E, 88:063308, 2013.

[7] P. Blanchard, B. Bramas, O. Coulaud, E. Darve, L. Dupuy, A. Etcheverry, and
G. Sylvand. ScalFMM: A Generic Parallel Fast Multipole Library. In SIAM
Conference on Computational Science and Engineering (SIAM CSE 2015), Salt
Lake City, United States, 2015.

[8] J. A. Board, J. W. Causey, J. F. Leathrum, A. Windemuth, and K. Schulten.
Accelerated molecular dynamics simulation with the parallel fast multipole al-
gorithm. Chem. Phys. Lett., 198(1):89–94, 1992.

[9] J. A. Board, C. W. Humphres, C. G. Lambert, W. T. Rankin, and A. Y.
Toukmaji. Ewald and Multipole Methods for Periodic N-Body Problems. In
P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel,
editors, Computational Molecular Dynamics: Challenges, Methods, Ideas, pages
459–471. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[10] L. Bock, C. Blau, G. Schröder, I. Davydov, N. Fischer, H. Stark, M. Rodnina,
A. Vaiana, and H. Grubmüller. Energy barriers and driving forces in tRNA
translocation through the ribosome. Nat. Struct. Mol. Biol., 20:1390–1396,
2013.

[11] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm
in three dimensions. J. Comput. Phys., 155(2):468–498, 1999.

[12] H. Dachsel. An error-controlled fast multipole method. J. Chem. Phys., 132:
119901, 2010.

[13] J. M. Dawson. Particle simulation of plasmas. Rev. Mod. Phys., 55:403–447,
Apr 1983.

[14] H. Ding, N. Karasawa, and W. A. Goddard. Atomic level simulations on a
million particles: The cell multipole method for Coulomb and London nonbond
interactions. J. Chem. Phys., 97(6):4309–4315, 1992.

[15] H.-Q. Ding, N. Karasawa, and W. A. Goddard. The reduced cell multipole
method for Coulomb interactions in periodic systems with million-atom unit
cells. Chem. Phys. Lett., 196(1):6–10, 1992.

[16] R. O. Dror, R. M. Dirks, J. Grossman, H. Xu, and D. E. Shaw. Biomolecular
simulation: a computational microscope for molecular biology. Annu. Rev.
Biophys., 41:429–452, 2012.

[17] M. Eichinger, H. Grubmller, H. Heller, and P. Tavan. FAMUSAMM: An algo-
rithm for rapid evaluation of electrostatic interactions in molecular dynamics
simulations. J. Comput. Chem., 18(14):1729–1749, 1997.

[18] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou. The fast multipole
method (FMM) for electromagnetic scattering problems. IEEE Transactions
on Antennas and Propagation, 40(6):634–641, June 1992.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

82

[19] U. Essmann, L. Perera, M. Berkowitz, T. Darden, and H. Lee. A smooth
particle mesh Ewald method. J. Chem. Phys., 1995.

[20] W. Fong and E. Darve. The black-box fast multipole method. J. Comput.
Phys., 228(23):8712–8725, 2009.

[21] A. G. Garcia, A. Beckmann, and I. Kabadshow. Accelerating an FMM-Based
Coulomb Solver with GPUs, pages 485–504. Springer International Publishing,
Berlin, Heidelberg, 2016.

[22] N. Y. Gnedin. Hierarchical particle mesh: An FFT-accelerated fast multipole
method. Astrophys. J. Suppl. Ser., 243(2):19, jul 2019.

[23] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.
Comput. Phys., 73(2):325 – 348, 1987.

[24] L. Greengard and V. Rokhlin. A new version of the Fast Multipole Method for
the Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.

[25] N. A. Gumerov and R. Duraiswami. FMM accelerated BEM for 3D Laplace
& Helmholtz equations. In Proceedings Int. Conf. on Boundary Element Tech-
niques, 2006.

[26] N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics pro-
cessors. J. Comput. Phys., 227(18):8290 – 8313, 2008.

[27] T. Hansson, C. Oostenbrink, and W. van Gunsteren. Molecular dynamics sim-
ulations. Curr. Opin. Struct. Biol., 12(2):190–196, 2002.

[28] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. GROMACS 4: Algo-
rithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J. Chem. Theory Comput., 2008.

[29] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles.
Taylor and Francis, Inc., USA, 1988.

[30] S. Jones. Introduction to dynamic parallelism. In GPU Technology Conference
Presentation, volume 338, 2012.

[31] M. Knap and P. Czarnul. Performance evaluation of Unified Memory with
prefetching and oversubscription for selected parallel CUDA applications on
NVIDIA Pascal and Volta GPUs. The Journal of Supercomputing, 75(11):
7625–7645, Nov 2019.

[32] B. Kohnke, C. Kutzner, and H. Grubmüller. A GPU-accelerated Fast Multipole
Method for GROMACS: performance and accuracy. Manuscript submitted to
J. Chem. Theory Comput., 2020.

[33] B. Kohnke, T. R. Ullmann, A. Beckmann, I. Kabadshow, D. Haensel, L. Mor-
genstern, P. Dobrev, G. Groenhof, C. Kutzner, B. Hess, H. Dachsel, and
H. Grubmüller. GROMEX – A scalable and versatile Fast Multipole Method

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

83

for biomolecular simulation. Springer International Publishing, Berlin, Heidel-
berg, 2020, in press.

[34] J. Kurzak and B. M. Pettitt. Fast multipole methods for particle dynamics.
Molecular simulation, 32(10-11):775–790, 2006.

[35] C. Kutzner, D. van der Spoel, M. Fechner, E. Lindahl, U. Schmitt, B. de Groot,
and H. Grubmüller. Speeding up parallel GROMACS on high-latency networks.
J. Comput. Chem., 2007.

[36] C. Kutzner, R. Apostolov, B. Hess, and H. Grubmüller. Scaling of the GRO-
MACS 4.6 molecular dynamics code on SuperMUC. In M. Bader, A. Bode, and
H. J. Bungartz, editors, Parallel Computing: Accelerating Computational Sci-
ence and Engineering (CSE), pages 722–730. IOS Press, Amsterdam/Nether-
lands, 2014.

[37] C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and
H. Grubmüller. More bang for your buck: Improved use of GPU nodes for
GROMACS 2018. J. Comput. Chem., 40(27):2418–2431, 2019.

[38] T. J. Lane, D. Shukla, K. A. Beauchamp, and V. S. Pande. To milliseconds
and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct.
Biol., 23(1):58–65, 2013.

[39] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,
A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros. A massively
parallel adaptive fast-multipole method on heterogeneous architectures. In SC
’09: Proc. of the Conference on High Performance Computing Networking,
Storage and Analysis, New York, NY, USA, 2009. Association for Computing
Machinery.

[40] M. T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. V. Kal, R. D. Skeel,
and K. Schulten. NAMD: a Parallel, Object-Oriented Molecular Dynamics
Program. The International Journal of Supercomputer Applications and High
Performance Computing, 10(4):251–268, 1996.

[41] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Program-
ming with CUDA. Queue, 6(2):40–53, Mar. 2008.

[42] C. Niedermeier and P. Tavan. A structure adapted multipole method for elec-
trostatic interactions in protein dynamics. J. Chem. Phys., 101(1):734–748,
1994.

[43] S. Páll and B. Hess. A flexible algorithm for calculating pair interactions on
SIMD architectures. Comput. Phys. Commun., 2013.

[44] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tackling exascale
software challenges in molecular dynamics simulations with GROMACS. In
S. Markidis and E. Laure, editors, Lect. Notes Comput. Sci. 8759, EASC 2014,
pages 1–25. Springer International Publishing Switzerland, 2015.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

84

[45] M. Patra, M. Karttunen, M. Hyvnen, E. Falck, P. Lindqvist, and I. Vattulainen.
Molecular dynamics simulations of lipid bilayers: Major artifacts due to trun-
cating electrostatic interactions. Biophys. J., 84(6):3636–3645, 2003.

[46] F. Paul, C. Wehmeyer, E. T. Abualrous, H. Wu, M. D. Crabtree, J. Schöneberg,
J. Clarke, C. Freund, T. R. Weikl, and F. Noé. Protein-peptide association ki-
netics beyond the seconds timescale from atomistic simulations. Nat. Commun.,
8(1):1–10, 2017.

[47] D. Potter, J. Stadel, and R. Teyssier. PKDGRAV3: Beyond trillion particle
cosmological simulations for the next era of galaxy surveys. Comput. Astrophys.
and Cosmology, 4(1):2, 2017.

[48] R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker.
Routine microsecond molecular dynamics simulations with AMBER on GPUs.
2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput., 9(9):3878–
3888, 2013.

[49] H. Schreiber and O. Steinhauser. Molecular dynamics studies of solvated
polypeptides: Why the cut-off scheme does not work. Chemical Physics, 168
(1):75–89, 1992.

[50] C. R. Schwantes, R. T. McGibbon, and V. S. Pande. Perspective: Markov mod-
els for long-timescale biomolecular dynamics. J. Chem. Phys., 141(9):090901–7,
2014.

[51] D. S. Shamshirgar, R. Yokota, A.-K. Tornberg, and B. Hess. Regularizing the
fast multipole method for use in molecular simulation. J. Chem. Phys., 151
(23):234113, 2019.

[52] D. E. Shaw, J. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C. Chao, M. M.
Deneroff, R. O. Dror, A. Even, C. H. Fenton, et al. Anton 2: raising the bar
for performance and programmability in a special-purpose molecular dynam-
ics supercomputer. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 41–53.
IEEE, 2014.

[53] T. Takahashi, C. Cecka, W. Fong, and E. Darve. Optimizing the multipoletolo-
cal operator in the fast multipole method for graphical processing units. Int.
J. Numer. Methods Eng., 89:105 – 133, 01 2012.

[54] R. J. A. Tough and A. J. Stone. Properties of the regular and irregular solid
harmonics. J. Phys. A: Math. Gen., 10(8):1261, 1977.

[55] V. Volkov. Better performance at lower occupancy. In Proceedings of the GPU
technology conference, GTC, volume 10, page 16. San Jose, CA, 2010.

[56] C. A. White and M. Head-Gordon. Rotating around the quartic angular mo-
mentum barrier in fast multipole method calculations. J. Chem. Phys., 105
(12):5061–5067, 1996.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

85

[57] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM,
52(4):65–76, 2009.

[58] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole
algorithm in two and three dimensions. J. Comput. Phys., 196(2):591–626, 5
2004.

[59] R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, and K. Yasuoka.
Fast multipole methods on a cluster of GPUs for the meshless simulation of
turbulence. Comput. Phys. Commun., 180(11):2066 – 2078, 2009.

[60] N. Yoshii, Y. Andoh, and S. Okazaki. Fast multipole method for three-
dimensional systems with periodic boundary condition in two directions. J.
Comput. Chem., 41(9):940–948, 2020.

II.2 A CUDA FAST MULTIPOLE METHOD WITH HIGHLY EFFICIENT M2L
FAR FIELD EVALUATION

86

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

II.3 A GPU-accelerated Fast Multipole Method for GRO-
MACS: performance and accuracy

In the following work, we presented a very detailed performance and accuracy
evaluation of the FMM for biomolecular simulations in GROMACS. I created all
FMM benchmarks and generated all resulting plots. The PME benchmarks and
figures depicting a few benchmark systems were created by Dr. Carsten Kutzner.
I wrote the Introduction and Conclusions sections. The remaining written content
of the paper was created by Dr. Carsten Kutzner and by me in an alternating
writing process, in which we iteratively enhanced the existing content. The complete
work was subsequently edited by Prof. Dr. Gert Lube and by Prof. Dr. Helmut
Grubmüller. This paper has been accepted for publication in Journal of Chemical
Theory and Computation (JCTC).

87

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

88

A GPU-accelerated Fast Multipole
Method for GROMACS: performance

and accuracy
Bartosz Kohnke1, Carsten Kutzner1, and Helmut Grubmüller1

1Max Planck Institute for Biophysical Chemistry, Theoretical and Computational
Biophysics, Am Faßberg 11, 37077 Göttingen

An important and computationally demanding part of molecular
dynamics simulations is the calculation of long-range electrostatic
interactions. Today, the prevalent method to compute these in-
teractions is particle mesh Ewald (PME). The PME implementa-
tion in the GROMACS molecular dynamics package is extremely
fast on individual GPU nodes. However, for large scale multi-node
parallel simulations, PME becomes the main scaling bottleneck as
it requires all-to-all communication between the nodes; as a con-
sequence, the number of exchanged messages scales quadratically
with the number of involved nodes in that communication step.
To enable efficient and scalable biomolecular simulations on future
exascale supercomputers, clearly a method with a better scaling
property is required. The fast multipole method (FMM) is such a
method. As a first step on the path to exascale, we have imple-
mented a performance-optimized, highly efficient GPU-FMM and
integrated it into GROMACS as an alternative to PME. For a fair
performance comparison between FMM and PME, we first assessed
the accuracies of the methods for various sets of input parameters.
With parameters yielding similar accuracy for both methods, we
determined the performance of GROMACS with FMM and com-
pared it to PME for exemplary benchmark systems. We found
that FMM with multipole order eight yields electrostatic forces
that are as accurate as PME with standard parameters. Further,
for typical mixed precision simulations settings, FMM does not
lead to an increased energy drift with multipole orders of eight
or larger. Whereas a ≈ 50, 000 atom simulation system with our
FMM reaches only about a third of the performance with PME, for
systems with large dimensions and inhomogeneous particle distri-
bution, e.g. aerosol systems with water droplets floating in vacuum,
FMM substantially outperforms PME already on a single node.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

89

1 Introduction

The evaluation of mutual interactions in many body systems is a crucial and
limiting task in many scientific fields as biomolecular simulations,? astronomy? or
plasma physics.? Here, we consider molecular dynamics (MD) simulations, where
electrostatic forces

fi = qi

N∑

j=1
j 6=i

qj
xi − xj

‖xi − xj‖3
, i = 1, ..., N (1)

acting on N atoms at positions xi with partial charges qi are calculated to deter-
mine new positions of the atoms in subsequent discrete time steps. ‖·‖ denotes the
Euclidean norm. A direct calculation of the forces has O(N2) complexity, thus only
systems of limited size can be computed directly in equitable time. Additionally, a
typical MD simulation employs periodic boundary conditions (PBC) to avoid surface
artifacts, making the direct calculation unfeasible even for small systems. In con-
trast to cosmological calculations, which are usually limited by the available memory
due to enormous particle numbers,? many interesting biomolecular systems consist
of O(105 − 106) particles. Recently, however, the demand to study increasingly
large systems has grown markedly, and systems of 108− 109 particles could become
routine soon.? ? ? ? Nevertheless, biomolecular systems, independent of their size,
require long trajectories where the length of a time step can be no longer than a few
femtoseconds for numerical stability reasons. Thus, the time required to finish one
simulation step needs to be shortened to a millisecond or less so that long enough
trajectories can be produced in reasonable time. To overcome these bottlenecks, the
solution of Eq. ?? requires efficient approximation.

The prevalent method for such approximation in the field is particle mesh Ewald
(PME).? PME uses Ewald summation to split up the calculation into a short range
part, for which all interactions up to a cutoff radius rc are directly evaluated, and a
long range part, which is solved in reciprocal space. To take advantage of fast Fourier
transforms (FFTs) for the conversions to and from reciprocal space, the charges
are interpolated onto a uniform grid using cardinal B-splines. Higher interpolation
orders and finer grids yield higher accuracy for the reciprocal part. PME scales with
O(N logN) and by construction provides a PBC solution, but does not allow for
non-periodic calculations.

MD packages like GROMACS? ? ? or NAMD? have PME implementations that
are highly performance-optimized. With GROMACS, typical MD systems reach it-
eration rates of O(1000) steps per second currently,? hence all forces are computed
in less than a millisecond. However, with increasing parallelization, as required for
high performance applications, PME runs into a communication bottleneck. Be-
cause the FFTs require all-to-all communication, which implies quadratic scaling
with the number of processes, PME scaling breaks down at intermediate number of
processes.? ? ? A further limitation is that the FFT grid becomes memory inten-
sive, particularly if high accuracy is required or for highly inhomogeneous charge
distributions.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

90

An alternative way for rapid evaluation of Coulomb forces is the fast multipole
method? (FMM), which is not impaired by the aforementioned limitations and
even scales with O(N). Therefore, while PME is fast for small to medium sized MD
systems at moderate parallelization, FMM will be competitive for large number of
particles, large simulation boxes, inhomogeneous charge distributions, and high par-
allelization.? ? Further, FMM can be used for both periodic and open boundaries.

FMM splits the calculation into a near field, which is directly evaluated, and into a
far field. For the far field, groups of sufficiently separated point charges are combined
and described as truncated multipole expansions. The grouping is accomplished by
recursively subdividing the simulation box into sub-boxes in an octree fashion, i.e.
each parent box is subdivided into eight equal child boxes when increasing the
tree depth d. This yields 8d boxes on the lowermost level. For d = 0, there is
no subdivision. Interactions between particles residing in the same or in directly
neighboring boxes at the lowest tree level are calculated directly as in Eq. (??),
whereas interactions between particles in distant boxes are approximated via far
field calculations. FMM can also allow for direct interactions between particles in
boxes with a larger distance from each other. The distance is controlled by the
well-separateness criterion ws. Larger ws improves the accuracy of the method but
it impairs its performance markedly since Eq. (??) scales quadratically with respect
to the number of particles.? In this work we exclusively consider ws = 1; hence,
only particles of nearest neighbor boxes interact directly.

For the far field interactions, the inverse distance between charged particles with
index i and j is approximated as?

1

‖xi − xj‖
≈

p∑

l=0

l∑

m=−l

‖xi‖l

‖xj‖l+1
Y ∗lm(θi, φi)Ylm(θj, φj), (2)

where Y and Y ∗ are spherical harmonics and their complex-conjugate, respectively.
The multipole order p controls the accuracy of the approximation. FMM achieves
linear scaling w.r.t. N by performing hierarchical far field operations on multipoles
expanded in octree boxes. Computationally, the most demanding part of the far
field evaluation is the Multipole-to-Local (M2L) transformation. It requires O(p2)
dot products with O(p2) complexity, yielding an overall complexity of O(p4).

The spherical harmonics based FMM (Eq. ??) was developed by ?. Following
this, other approximations of the inverse distance have been developed, such as the
plane wave expansion approach? to reduce operational costs of the M2L operator
from O(p4) or O(p3) to O(p2) or the black-box FMM,? which utilizes Chebyshev
interpolation to minimize the far field representation of the multipoles.

One of the first parallel GPU implementations of the spherical harmonics based
FMM? used O(p3) operators and achieved accuracy dependent speedups of 30–70
relative to a serial run on a single CPU core. Recently, the O(p3) M2L operator
for a single GPU was optimized further.? GPUs were used to speed up the kernel
independent FMM? ? and the black-box FMM.? A single-GPU implementation

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

91

of the spherical harmonics FMM? was also parallelized over a cluster? with 32
GPUs where it reached parallel efficiencies of 44 % for 106 particles and 66 % for
107 particles. Larger, multi-node, multi-GPU parallelization? for a 256 million
particle system over 256 GPUs followed. ? and ? presented task based parallelization
strategies.

The FMM has been successfully used to compute Coulomb or gravitational in-
teractions in a wide range of applications,? ? ? whereas its use for biomolecular
simulations is still limited with a few exceptions.? ? We have therefore developed,
implemented and optimized an FMM for MD simulations with GROMACS.

As GROMACS usually runs in mixed precision, using double precision only for
accumulation order sensitive tasks, consumer GPUs are extremely attractive for the
force computation, as they offer a high single precision FLOP rate at a low price,
especially compared to CPUs.? Therefore, we implemented the complete FMM
workflow on the GPU. Whereas rotational M2L operators with complexity O(p3)
have been proposed,? here we consider an O(p4) approach for the M2L operator as
it is better suited for GPU parallelization.?

Our GPU version is based on the ScaFaCoS FMM,? which we fully parallelized
with CUDA? and optimized for GROMACS. Here, we assess the performance of
our GPU FMM implementation? and evaluate its accuracy in comparison to GRO-
MACS’ PME implementation.

2 Benchmark methods

In a first step, we verified that our CUDA FMM implementation yields accurate
energies and forces by comparing against known reference solutions for several input
systems. Subsequently, we used typical MD systems to compare FMM vs. PME
performance in GROMACS 2019.

2.1 Accuracy of FMM results

The forces and energies computed with the FMM deviate from their exact values
mainly due to truncation of the multipole expansion at finite order p, which for small
p causes the main contribution to the numerical error. Additionally, the errors in the
energies vary due to different accumulation orders in the parallelized reductions. To
quantify the magnitude of these errors, we compared FMM derived forces, potentials,
and energies with reference solutions.

Given a reference solution vi, i = 1, . . . , N , with N values of the potential at the
atomic positions, or the 3N individual scalar values x, y, and z force components,

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

92

we estimated the approximation error with the cumulative relative L2 error norm:

Lrel
2 :=

(∑N
i=1(vi − ṽi)2∑N

i=1 v
2
i

) 1
2

, (3)

where ṽi are the approximated values.

2.2 Benchmark systems

To assess the correctness and performance of our FMM implementation we created
five benchmark systems, which were then used to check different aspects of our
implementation. We first verified that the FMM forces and energies for open and
periodic boundaries are correct, than we found out the FMM parameters yielding
the same accuracy as the existing GROMACS PME implementation. Finally, we
compared the performance of both methods at the same accuracy.

GROMACS benchmark systems were set up with GROMACS? 2019 using the
AMBER03 force field? , the TIP3P? water model and an integration time step of
4 fs. Note that this force field and water model are just an example – in fact, all
force fields and water models supported by GROMACS can be combined with FMM
electrostatics.

Infinite ideal crystal

The “ideal crystal” benchmark represents an infinite lattice of alternating positive
and negative elementary charges. The charges were arranged as in a NaCl crystal
in a 32× 32× 32 nm3 large box containing alternating +1e and −1e charges at 0.5,
1.5, 2.5, . . . 30.5, 31.5 nm in each dimension, in total 323 = 32, 768 point charges.
The shortest distance between nearest charges is exactly 1.0 nm allowing for direct
comparison with an analytical solution.

Considering the PBC, such a system of size 2 × 2 × 2 nm3 would be sufficient
to compare against an analytical solution. However, the number of charges was
chosen in a way that allows for flexibility during the tests regarding the choice of
parameters. For instance, with PME a larger range of real-space cutoffs that can
be used, and with FMM various tree depths d = 1, 2, 3, 4 can be tested having a
significant number of charges even on the lowest levels.

The potential energies at each charge center were calculated analytically with
Madelung’s constant M .? Its value was obtained by summing a specific, three
dimensional Epstein zeta function

M(s) =
∑′

x,y,z∈Z

(−1)x+y+z

(x2 + y2 + z2)s
(4)

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

93

for the case of s = 1/2, where
∑′

excludes the origin sum to avoid singularity. The

sum is absolutely convergent when summing over expanding cubes.? For comparison
we used the value M = −1.74756459 . . ., which is given with 60 digits in Crandall? .

Salt water

Our “salt water” benchmark consists of 16,861 water molecules with 46 Na+ and
46 Cl− ions in a ≈ 8 × 8 × 8 nm3 periodic simulation box, yielding 50,675 atoms
in total. We used it to compare PME versus FMM errors and to determine which
FMM parameters are needed to obtain a desired accuracy. Considering the Coulomb
forces, we expect this system to reasonably well approximate the error behavior of
typical MD systems of macromolecules embedded in water. However, setups with
highly non-uniform charge distributions, as e.g. membrane systems, could differ in
their error distribution and magnitude.

An initial trajectory was generated with cutoffs set to 1 nm. PME was used for
electrostatic interactions with a grid spacing of 0.135 nm and 4th order B-spline
interpolation.? Temperature coupling to a heat bath of 300 K was done with the
V-rescale algorithm,? while pressure was kept at 1 bar using Berendsen coupling.?

Salt water droplet

The “salt water droplet,” as shown in Fig. ??, contains the same number of
molecules as the periodic salt water system, but in open boundaries. It was built by
centering a snapshot of the above system in a larger box of size 14 × 14 × 14 nm3.
Apart from the fixed volume and therefore variable pressure, the simulation param-
eters are identical to the periodic case. With open boundaries, the system adopted
an approximately spherical shape within ≈ 50 ps.

In principle, the box size is only relevant with PBC; technically, however, we used
the box to treat the individual single water molecules that did occasionally evaporate
from the droplet, as if they were in PBC, simply to keep them from flying too far
away. A 130 ns long trajectory of the droplet was simulated, of which snapshots for
later analysis were extracted.

The droplet system with open boundaries allows for computation of the reference
Coulomb energy and forces by direct summation. It was, therefore, used assess
the correctness of the complete FMM implementation apart from the periodic part,
which is computed with an additional lattice operator.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

94

Figure 1: Salt water droplet test system. Water molecules are shown in surface
representation (oxygens red, hydrogens white), Na+ ions in magenta, Cl−

ions in green, simulation box in black.

Aerosol / multi-droplet evaporation system

The “multi-droplet system” (Fig. ??) was built to demonstrate the advantages
of the FMM for systems with highly nonuniform particle distributions, as occur
in the atomistic simulation of, e.g., electrospray ionization as a prerequisite for
mass spectrometric analysis,? ? ? ion mobility spectrometry,? laser-induced liquid
beam ion desorption,? ? and various naturally occurring? or artificially produced?

aerosols.

MD simulations can significantly complement these experiments by providing a
detailed picture of the involved processes, e.g. the various aspects of droplet forma-
tion and evolution, charge migration, ion/lipid/protein desolvation, collisions with
the background gas and gas-phase unfolding. Simulating proteins, lipids, ion, and
waters in the gas phase? implies spatially extended simulation systems consisting
mostly of vacuum.

In the gas phase, due to the lack of shielding, the correct treatment of long-
rage electrostatic forces is even more crucial than for fully solvated species to avoid
artifacts? and to correctly describe experimental conditions.? With such extended
systems, PME often reaches its limits, as memory requirements become prohibitive
for the underlying large FFT grids. Sometimes the use of PME is precluded because
for optimal agreement with experiment, open boundaries may be more appropriate
than PBC.?

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

95

Figure 2: Aerosol / multi-droplet system. Water surface representation as in Fig. ??;
closeups to the right show individual droplets with Na+ ions in magenta
and Cl− ions in green.

Being a prototype for such sparse systems, our multi-droplet benchmark contains
75 small water droplets in a box of side length 135.6 nm with 108,663 atoms. 63
Na+ and 63 Cl− ions were distributed within the droplets. The system was run in
the NVE ensemble with PBC. The van der Waals cutoff was set to 2 nm. For PME,
to prevent a prohibitively large FFT grid, a Coulomb cutoff of 2.943 nm was used
in combination with a grid spacing of 0.353 nm. This results in a Fourier grid of
3843 points.

Water boxes of different size

To assess how our FMM implementation scales w.r.t. the number of particles
N , we have build cubic boxes of edge length 3.13 nm – 67.4 nm containing 1,000
– 10,000,000 TIP3P water molecules,? i.e. N = 3, 000 – 30, 000, 000 particles.
Benchmarks were run in the NVT ensemble using Berendsen temperature coupling?

at a reference temperature of 300 K. Coulomb and van der Waals cutoffs were set
to 1 nm. With PME, a mesh spacing of 0.135 nm was used with fourth order
interpolation.

Random charges

To assess the FMM performance and scaling in a standalone setting, i.e. with-
out being coupled to GROMACS, we used 1000 < N < 286, 000, 000 randomly
distributed charges in a box of a constant size of 100 nm. FMM standalone tests
estimate the overhead introduced by integration of the FMM into GROMACS.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

96

2.3 Benchmarking procedure

All performance benchmarks were run on a node with Intel E5-2630v4 @ 2.2
GHz CPU and NVIDIA RTX 2080Ti GPU running Scientific Linux 7.6 GROMACS
2019 was compiled with GCC 7.4.0, CUDA 10.0, thread-MPI, and AVX2 256 SIMD
instructions, and with OpenMP and hwloc? 1.11 support. For the runs with PME
on the CPU, the FFTW 3.3.7? library was used.

For optimum performance in a single-CPU, single-GPU setting,? ? we used a
single thread-MPI rank with either as many OpenMP threads as physical CPU cores
(10), or as many OpenMP threads as CPU hardware threads (20). On modern Intel
CPUs, using all available hardware threads can provide a performance benefit of up
to ≈ 15% for cases with at least a few thousand atoms per core. We tested both
settings in our benchmarks and report the performance of the fastest setting. It
turned out that our benchmark systems with 50,000 atoms or more were faster with
20 threads instead of 10.

Additionally, the FMM vs. PME scaling benchmarks were run on a node with
20-core Intel Xeon Gold 6148F CPU and NVIDIA V100-PCIE-32GB GPU running
SLES 12.4. Here, GROMACS was compiled with GCC 8.4.0, CUDA 10.1, Intel MPI
2019, and AVX 512 SIMD instructions, and with OpenMP and hwloc 2.1.

Each benchmark ran for several minutes, i.e. several thousand time steps. Because
the initial time steps often require long execution times due to memory allocations
and load balancing effects, all times were recorded for the second half of each run.

3 Results and Discussion

3.1 FMM convergence and correctness

In this section we quantify the errors resulting from the FMM evaluation of the
Coulomb interactions. We will first show that, with increasing order p of the mul-
tipole expansion, FMM converges to the correct solution. This was done in two
steps. First, we used a system with open boundaries, where the correct solution
(within numerical limits) can be obtained by a direct summation. Second, a simple
periodic crystal with analytically derived solution was used as a reference to verify
the correctness of the FMM PBC solution.

The Coulomb potential VC for a system of N charges is

VC = k ·
N∑

i

∑

j<i

qiqj
||ri − rj||

(5)

with k = 1/(4πε0) and ε0 the vacuum permittivity. Our FMM uses dimensionless

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

97

p = 4

8

12

18

24
30
36 40

50
direct eval.

p = 8 errors

forces

p = 24 errors

depth d = 2 d = 3 d = 4

Figure 3: FMM errors for the 50,675 atom salt water droplet (Fig. ??) using double
precision. Left panel shows absolute values of the individual force compo-
nents (black stars, index on x-axis), and the deviations from the reference
values for exemplary cases p = 8 (orange dots) and p = 24 (purple dots).
Colored histograms show the distribution of absolute errors in the forces
for multipole approximations p = 4 − 50 and tree depths d = 2, 3, and
4. For comparison, black histograms show distribution of actual forces (in
absolute values). The black outline near the bottom shows the error for
directly evaluating all interactions. Note that the black force histograms
were scaled by 0.75 to fit in the panels.

values with k set to unity, whereas in GROMACS, k ≈ 138.935 kJ nm/(mol e2), with
e the elementary charge. If an axis of a plot shows kJ/mol units for the potential
energy and kJ/mol/nm for a force, the GROMACS unit system is used, otherwise
energy and forces will be dimensionless.

3.1.1 Comparison to the direct summation for open boundaries

We first asked how accurate the FMM is for open boundaries. For an exemplary
snapshot of the salt water droplet (Fig. ??), we compared the FMM result for differ-
ent parameters to a reference solution, which was determined by directly summing
all Coulomb interactions in double precision.

Figs. ??–?? quantify the FMM errors in the Coulomb forces for double and single
precision, respectively. The upper rows (black) show the distribution of the 3N
individual components of the forces f ref

i (i = 1, . . . , 3N) as absolute values. The
colored histograms show error distributions computed from the differences to the

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

98

p = 2

4

6
10 12

20

8

direct eval.

p = 4 errors

forces

p = 10 errors

depth d = 2 d = 3 d = 4

Figure 4: FMM errors for the 50,675 atom salt water droplet (Fig. ??). Same as
Fig. ??, but for single precision FMM.

reference values |f ref
i − fFMM

i | for various multipole orders for depths d = 2, 3 and 4.

As can be seen, the force errors decrease exponentially with growing multipole
order p and begin to saturate at p = 40 and p = 10 in double and single precision,
respectively. With single precision, as commonly used for MD simulations, increasing
the multipole order to p > 12 does not result in a further reduction of the error in
the Coulomb forces for d ≤ 4. Increasing the tree depth d by one increases the errors
approximately by half an order of magnitude; however, this effect is less pronounced
for higher multipole orders.

The black outlined histograms at the bottom of Figs. ??–?? quantify the error
distributions between different runs of a direct summation. These errors reach max-
imal relative machine precision,? which is 2.22× 10−16 and 5.96× 10−8 for double
and single precision, respectively. Hence, since the FMM errors with multipole or-
ders p = 40 in double and p = 12 in single precision saturate in the region of a
direct summation error, for both precisions FMM reaches the numerical limits at
these multipole orders.

Figs. ?? and ?? show Lrel
2 error norms of potentials and energies for an exemplary

snapshot of the salt water droplet system. In single precision, increasing the multi-
pole order to p > 12 does not reduce the error any further as the error reaches the
limited machine representation.

In summary, for open boundaries we conclude that FMM forces are as accurate
as forces from a direct summation for high multipole orders p. In double precision,

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

99

0 5 10 15 20 25 30 35 40 45 50
multipole order p

10 14

10 11

10 8

10 5

10 2
re

la
tiv

e
L2

 e
rro

r n
or

m
Depth 2 potential
Depth 2 energy
Depth 3 potential
Depth 3 energy
Depth 4 potential
Depth 4 energy

Figure 5: Relative Lrel
2 error norm (Eq. ??) of the total electrostatic energy (solid

lines with circles) and of the potentials at the atomic positions (dashed
lines with stars) for the salt water droplet with open boundaries (double
precision).

0 5 10 15 20
multipole order p

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

re
la

tiv
e

L2
 e

rro
r n

or
m

Depth 2 potential
Depth 2 energy
Depth 3 potential
Depth 3 energy
Depth 4 potential
Depth 4 energy

Figure 6: Relative Lrel
2 error norm (Eq. ??) of the total electrostatic energy (solid

lines with circles) and of the potentials at the atomic positions (dashed
lines with stars) for the salt water droplet with open boundaries (single
precision).

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

100

0 5 10 15 20 25 30 35 40 45 50
multipole order p

10 15

10 13

10 11

10 9

10 7

10 5

10 3

re
l.

de
vi

at
io

n
fro

m
 a

na
ly

t.
en

er
gy Depth 0

Depth 1
Depth 2
Depth 3
Depth 4

Figure 7: FMM energy error for the ideal crystal (double precision). Circles show
the relative deviation of the energy computed with FMM from its correct
value as a function of multipole order p and tree depth d.

p & 40 yields as accurate forces as a direct summation, whereas for single precision,
p & 12 suffices to reach the numerical limits. The relative accuracy of the Coulomb
potential energy is about 10−7 for p ≥ 8 in single precision, whereas with double
precision, accuracies of 10−14 are reached for p > 40. For p < 50 in double precision
and p < 12 in single precision, the errors in forces and energies are larger for higher
tree depth d.

3.1.2 Comparison to analytic solution for periodic boundaries

Next, we compared the FMM electrostatic energy for the ideal crystal with the
analytical results. Fig. ?? shows the relative error in the energy for a double precision
computation. The energy error decays exponentially with increasing multipole order.
Note that the decay of the energy (compare also Fig. ?? and Fig. ??) is not strictly
monotonic, which follows from the evaluation of the Coulomb integral on cuboids and
has been described elsewhere.? ? Reaching the relative accuracies at the numerical
limit for p & 40 verifies that the treatment of the periodic boundaries in our FMM
implementation is correct and that the FMM approximated energy with full PBC
converges to the true value for growing multipole orders.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

101

10 20 10 17 10 14 10 11 10 8 10 5

Ewald rtol parameter

10 16

10 14

10 12

10 10

10 8

10 6

10 4

re
l.

de
vi

at
io

n
fro

m
 a

na
ly

t.
en

er
gy PME (rc = 2 nm, s = 0.05 nm)

PME (rc = 4 nm, s = 0.05 nm)
PME (rc = 4 nm, s = 0.10 nm)
PME (rc = 8 nm, s = 0.05 nm)
FMM for p 40

Figure 8: PME energy error for the ideal crystal (double precision). Circles show
the relative deviation of the energy computed with PME from its correct
value as a function of the ewald-rtol parameter for interpolation order
12 for four parameter sets (see legend, rc = real-space cutoff, s = PME
grid spacing) For comparison, the corresponding FMM errors for p ≥ 40
are indicated by the shaded region (compare Fig. ??).

3.2 Comparison of FMM to PME

After establishing the correctness of our FMM implementation, we compared it
to PME by asking which FMM parameters p and d yield similar accuracy as several
representative PME parameter settings, e.g. the spacing s of the Fourier grid and
the B-splines interpolation order (also called PME order). In GROMACS’ PME
implementation, the ewald-rtol parameter controls the relative strength of the
direct potential at the cutoff rc and thereby how accurate the real space part is in
relation to the reciprocal space part.? Smaller values yield a more accurate real
space contribution but a less accurate reciprocal space contribution. The default
PME parameters use 10−5 for ewald-rtol which minimizes the error for typical
MD settings with cutoffs rc ≈ 1 nm and PME grid spacings of s ≈ 0.12 nm. To
reach optimal PME accuracy, however, a much smaller value of the ewald-rtol

parameter is required in combination with a very fine PME grid and a sufficiently
large interpolation order.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

102

3.2.1 PME and FMM for the ideal crystal

Fig. ?? shows how much the energy of the ideal crystal computed using several
different PME parameters deviates from the reference values. For the used very fine
grids with spacing s = 0.05 − 0.1 nm (corresponding to 3203 − 6403 grid points)
combined with a high interpolation order of 12, PME accuracy mainly depends on
the value of the ewald-rtol parameter. For ewald-rtol / 10−13, the energy error
achieves roughly 10−14, whereas FMM reaches this error bound for p ≥ 40. Hence,
we have shown that both PME and FMM reach a relative accuracy of ≈ 10−14 in
double precision in a periodic system.

3.2.2 PME vs. FMM for the salt water system

Having shown that FMM and PME yield the same numerical accuracy for the
potential energy for a simple periodic system, we switch to a more typical MD
setting, namely the periodic salt water box with 50,675 atoms. For this system, we
used a reference solution computed with the FMM in double precision using p = 50
and d = 0.

The colored histograms in Fig. ?? show the errors in the Coulomb forces for various
FMM and PME parameters. For PME, we selected four different parameter sets,
two of which are representative for typical MD settings, another which pushes the
parameters towards maximum accuracy, plus an intermediate one. The “default” set
uses the GROMACS default values of PME parameters, which are typical settings
for many biomolecular simulations, i.e. a Coulomb cutoff of rc = 1.0 nm with a
PME grid spacing of s = 0.12 nm and a B-spline interpolation order of 4. The
“high precision” set uses rc = 1.2 nm with s = 0.1 nm and an interpolation order
of 6. We also test a “maximal” parameter set using the largest possible cutoff that
still respects the minimum image convention (rc = 4.0 nm) with s = 0.04 nm and
an interpolation order of 12, which is the highest order supported by GROMACS.
The “extreme” parameter set yields a precision between the “high” and “maximal”
settings, see legend of Fig. ??. For each of the four PME parameter sets we have
selected the ewald-rtol parameter such that it yields the minimal error in the
Coulomb energy in double precision, as summarized in Fig. ??.

For the typical use case with single precision forces, the accuracy of the Coulomb
forces for “default” PME parameters is similar to FMM for p ≈ 7 at d = 3. The
“high precision” PME parameters require an FMM with p = 14.

3.2.3 Periodic boxes with non-cubic geometry

With PBC, our implementation is currently limited to cubic box shapes. Non-
cubic simulation boxes require modified octree subdivision,? as Eq. ?? converges
only if ‖xi‖ < ‖xj‖. As shown in Fig. ??A, this condition is always fulfilled for cubic

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

103

FMM double FMM singlePME double PME single

PME settings:
rC = 1.0 nm, s = 0.12 nm, rtol 10-4, order 4
rC = 1.2 nm, s = 0.10 nm, rtol 10-6, order 6
rC = 1.5 nm, s = 0.08 nm, rtol 10-8, order 8
rC = 4.0 nm, s = 0.04 nm, rtol 10-14, order 12depth 0

depth 0

p = 4
p = 2

8
12

18

24

30

36
40 50

4
6
8

10
12

20

default default

high high

maximal

extreme

x,
y,z

 fo
rc

e
co

m
po

ne
nt

s
 (k

J/
m

ol
/n

m
)

Figure 9: Accuracy of the FMM and PME Coulomb forces for a snapshot of the
50,675 atom periodic salt water system for double precision (left two pan-
els) and single precision (right two panels). Black histograms show distri-
bution of actual forces (in absolute values). For FMM, colored histograms
show the distribution of absolute errors in the forces for multipole approx-
imations p = 2 − 50 at d = 3. For PME, values for four representative
parameter sets are shown color-coded (see legend). Note that the black
force histograms were multiplied by 0.9 to fit in the panels. The black
outline in the FMM panels shows the error for a direct evaluation of all
interactions that are in the simulation box (d = 0) combined with a p = 50
(for double precision, p = 20 for single) multipole approximation for the
surrounding periodic images.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

104

Figure 10: Coulomb energy error for various PME parameters, as in Fig. ?? but for
a snapshot of the salt water system for double precision (solid lines with
large circles) and single precision (dotted lines with darker small circles).
For each combination of rc, s, and PME order there is one value of the
ewald-rtol parameter that minimizes the PME error. The reference
energy was determined using a double precision FMM calculation with
p = 50 at d = 0. As almost all energy errors are ≥ 10−6 for single
precision, they were omitted from the graph for the “maximal” parameter
set (brown).

boxes. Slight deviation from cubicity, Fig. ??B, do not violate this condition, but a
larger ratio s := ‖xi‖ / ‖xj‖ affects the convergence rate of the approximation. With
decreasing s, the approximation error decreases with ‖xj − xi‖−1 sp+1 for given p.?

As a rough guideline, a rectangular box with a 1.2 : 1 aspect ratio should achieve
a similar accuracy as a cubic box with p = 8 (or p = 12), if the multipole order is
raised to p = 10 (or p = 25). Slight deviations from cubicity, i.e. a few percent,
should however not markedly affect the accuracy at constant p.

3.3 Energy conservation with FMM

For NVE simulations without temperature and pressure control, all employed al-
gorithms must be energy-conserving to prevent a gradual, unphysical heating (or
cooling) of the simulation system. But even when a thermostat is in place to ab-
sorb excess heat, algorithms should in general not introduce or remove significant

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

105

A B C

𝒙𝒊
𝒙𝒋

𝒙𝒊

𝒙𝒋

𝒙𝒋

𝒙𝒊 𝒙𝒊

𝒙𝒋 𝒙𝒋

𝒙𝒊
𝒙𝒊

𝒙𝒋

Figure 11: The chosen strict octree subdivision requires the simulation box to be
approximately cubic, otherwise the convergence criterion is not fulfilled.
A: exactly cubic box, B: slightly non-cubic box, C: extremely non-cubic
box. A source particle xi and a target particle xj are positioned in a way
that maximizes the ‖xi‖ / ‖xj‖ ratio reflecting the worst case scenario.

amounts of heat from the system as that could cause artifacts. In practice, how-
ever, slight deviations from perfect energy conservation may be tolerated and in fact
many of the employed algorithms contribute (with positive or negative sign) to an
overall energy drift. The drift is caused by accumulated numerical and integration
errors due to, e.g., the finite integration step size, the finite numerical precision, the
constraint algorithm(s), or the various approximations during force calculations.

One such approximation are the pair lists for the Coulomb and van der Waals
interactions within the cutoff. For enhanced performance, these lists are constructed
from the cutoff plus an added buffer region (called Verlet buffer) so that they do
not need to be updated every step. However, with list lifetimes > 1 step, even with
such a radial buffer, occasionally a distant nonbonded interaction may be missed,
thus contributing to the overall energy drift.?

In contrast, for FMM-computed Coulomb interactions, energy drift results from
octree space discretization. Whereas PME uses a smooth switching function between
interactions computed in direct versus reciprocal space, FMM particles contribute
either completely or not at all to an octree box. Hence, particles crossing the octree
box boundaries produce small discontinuities in the forces over time.

When substituting PME with FMM we need to make sure that FMM does not
increase the total energy drift. Therefore, we have determined the energy drift over
time in a typical, mixed precision simulation with PME and compared it to the
same simulation with FMM for various FMM parameters. Fig. ?? shows the drift
of the total energy for the salt water benchmark with FMM in comparison to PME
with “default” parameters (rc = 1.0 nm, s = 0.12 nm, fourth order interpolation,
ewald-rtol = 10−4). With FMM, at the depth that yields the highest performance
(d = 3), the PME default drift level is met for multipole orders p ≥ 8. The values
of the total drift smaller than the black dashed line are due to cancellation of the
positive FMM contribution with negative contributions as e.g. result from the water
SETTLE constraints.? Whereas with double precision and a large enough Verlet
buffer, the total drift can be reduced to < 10−7 kJ/mol/ps per atom for both PME
and FMM (see Figure 11 in ?), typical mixed precision MD settings yield drifts of

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

106

p
=

6
p =

 7
p = 8

p = 9

p = 10

×

Figure 12: Drift of the total energy at typical mixed precision settings for the peri-
odic salt water system. Dashed black lines show the total (in this case
negative) energy drift with PME (∆t = 4 fs, “default” PME parameters
as given in Fig. ??, default Verlet buffer tolerance of 0.005 kJ/mol/ps).
Top panel: Evolution of the total energy with FMM at depth 3 (red)
compared to PME (black). Bottom panel: Absolute drift of the total
energy derived from a linear fit. At depth d = 3 (encircled numbers),
which results in optimal FMM performance for this system, for p ≥ 8,
the positive drift component from the FMM does not lead to an increased
total drift.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

107

5 − 8 × 10−5 kJ/mol/ps per atom. Regularizing the FMM could help to meet the
energy conservation requirements of MD simulation at even lower p, as shown by ?

3.4 Performance of the GPU FMM in GROMACS

3.4.1 FMM vs. PME performance

With previous tests we have established that the FMM with p = 8 and d = 3
achieves the same approximation quality as the PME with ”default” parameters
(see Fig. ??). Therefore, we compared the performance of the two methods at these
parameters.

We first determined the FMM performance as a function of p and d for simulations
in mixed precision (Fig. ??). At p = 8, the salt water and multi-droplet benchmark
achieves 153 ns/day and 72 ns/day, respectively. For both benchmarks d = 3 maxi-
mizes the performance. However, the scaling behaviors w.r.t. p notably differ when
comparing both systems.

The inhomogeneity of the particles distribution in the multi-droplet system changes
the near field to far field calculation intensity ratio. Clustered particles occupy only
few FMM boxes, hence, for the far field, the empty boxes are skipped to enhance
performance. We can observe that performance dependency on p is significant only
for higher multipoles as the calculation is dominated by a very large number of
directly interacting particles clustered into only few boxes.

Fig. ?? shows a performance comparison between FMM and PME for both sys-
tems. For the periodic salt water system, GROMACS with GPU FMM achieves
about a third of the GPU PME performance. The situation reverses for the strongly
inhomogeneous multi-droplet system: here, FMM outperforms PME by more than
a factor of two.

We finally compared the FMM and PME scaling behavior w.r.t. the number of
particles for N = 3, 000 – 30, 000, 000. To ensure optimal scaling, we determined
the proper FMM depth for each system size at p = 8. As can be seen in Fig. ??, for
both methods we can identify two different slopes with polynomial scaling O(Nα),
where α describes the slope of the curve. For small systems (N < 30, 000) α is
approximately 0.5. This indicates that with growing N in this region the GPU
utilization increases leading to a better scaling behavior than linear. For N > 30, 000
both methods achieve α ≈ 1 on the Tesla V100 GPU with 32 GB memory in the
entire tested particle range. However, when using the RTX 2080Ti GPU with 11
GB memory the scaling begins to worsen already by ≈ 300, 000 particles. Here
the FMM scales slightly better (α = 1.02) whereas the PME achieves α = 1.08
indicating performance decrease due to higher memory requirement.

From the FMM standalone tests, also shown in Fig. ??, we can clearly see that

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

108

0 5 10 15 20
multipole order p

0

50

100

150

200

250

300
pe

rfo
rm

an
ce

 (n
s/

da
y)

salt water
benchmark

0 5 10 15 20
multipole order p

0

10

20

30

40

50

60

70

80

pe
rfo

rm
an

ce
 (n

s/
da

y)

multi droplet
benchmark

Figure 13: GROMACS performance with FMM electrostatics for the 50,675 atom
periodic salt water system (left) and for the 108,663 atom aerosol/multi-
droplet benchmark (right). Encircled numbers indicate FMM tree depth.
With p = 8 as indicated by the dashed vertical line, FMM offers an accu-
racy of the electrostatic interactions that is comparable to the “default”
PME parameter set (i.e. rc = 1.0 nm, PME grid spacing s = 0.12 nm,
fourth order interpolation, see Fig. ??). Benchmarks were run with 20
OpenMP threads on the CPU.

our FMM is tightly integrated into the GROMACS time stepping over the whole
tested N range, as the runtimes of the FMM with GROMACS are not significantly
longer than the FMM standalone runtimes.

Furthermore, on the Tesla V100 GPU, with the standalone FMM implementation
we were able to run performance tests for even larger number of particles as, in
contrast to PME, where the simulation box size is limited by the available memory,
FMM is limited only by the number of particles. Fig. ?? shows that standalone
FMM scales linearly up to ≈ 270, 000, 000 and ≈ 160, 000, 000 particles in single
and double precision, respectively. The ability to perform efficient double precision
calculations on GPU introduces a new asset as GROMACS is limited to run double
precision simulations only on CPU.

3.4.2 Comparison to other FMM implementations

Finally, we compared the performance of our implementation to GemsFMM,?

which is another GPU FMM implementation written in CUDA. It uses spherical
harmonics for the far field evaluation and O(p4) operators to shift and transform

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

109

Figure 14: FMM versus PME performance in GROMACS for the salt water (top)
and the multi droplet (bottom) benchmark. Settings were chosen such
that PME and FMM yield a similar accuracy of the electrostatic forces as
well as a comparable energy drift. FMM used p = 8 and d = 3, whereas
PME used the “default” parameter set (rc = 1.0 nm, PME grid spacing
s = 0.12 nm, fourth order interpolation, see Fig. ??). For the multi
droplet system, for optimal PME performance, both rc and s were scaled
by a factor of 2.943, which leaves PME accuracy essentially unchanged.

the moments. Unfortunately, we were unable to find any other complete GPU-FMM
implementations (i.e. that compute both the far field and the near field) that can
be tested and provide verifiable results.

Fig. ?? compares FMM runtimes for particle numbers N = 104 – 107. The optimal
depth for each N was chosen separately for each implementation to ensure optimal
performance. Both implementations show a linear scaling w.r.t. N . The FMM
implementation described in this work outperforms GemsFMM by a factor of 5.5 to
13.

4 Conclusions and outlook

Here we have assessed the accuracy and performance of our GPU FMM described
in detail in ? We demonstrated that our implementation provides correct electro-
static energies and forces for single and double numerical precisions by comparing to
high-precision reference solutions for open and periodic systems. Using benchmark
systems of various sizes and compositions, ranging from 3, 000 to 286 M particles, we
measured and compared FMM to PME performances in GROMACS on up-to-date
GPU models.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

110

GROMACS with PME

GROMACS with FMM

2080Ti
V100

do
ub

le
sin

gl
e

d FMM standalone (depth d) on V100

2080Ti
V100

p=9
p=8 FMM multipoleorder p
p=7

Figure 15: FMM and PME scaling w.r.t. system size N for up to 268 million charges.
Benchmarks were run on an NVIDIA Tesla V100 GPU with 32 GB RAM
(solid lines) and on an RTX 2080Ti GPU (dashed lines). Blue (single
precision) and orange (double precision) colors denote FMM standalone
timings for the random charges benchmark (left scale) with depths d = 1
– 6 (encircled numbers) and multipole order p = 8, whereas the lower
and upper boundaries of the shaded regions indicate timings for p = 7
and p = 9. Grey and dark blue lines show wall clock time per MD
step (left scale) and resulting GROMACS performance (right scale) for
PME (grey stars) and FMM (blue circles) for waterboxes of different size.
GROMACS benchmarks were run on a 10-core E5-2630v4 node with RTX
2080Ti GPU (dashed lines) and on a 20-core Xeon Gold 6148F with V100
GPU (solid lines) with all nonbonded interactions offloaded to the GPU.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

111

Figure 16: Performance of our FMM (blue) compared to the GemsFMM implemen-
tation (red). Shown are the average runtimes for a single complete FMM
evaluation (far field plus near field) at p = 8 on an NVIDIA RTX 2080
GPU. The black dashed line depicts linear scaling.

As a prerequisite to calculate Coulomb interactions in MD simulations with the
FMM, as well as for a proper performance comparison, we have determined the
FMM parameters that yield as accurate results as typical PME settings. For a
representative biomolecular simulation system of about 50,000 particles in size, a
multipole order of seven yields a similar accuracy for the Coulomb energies and
forces as standard PME parameters in a mixed precision simulation. The error
distribution for the Coulomb forces is comparable for both solvers. Limiting the
energy drift to the level present in a standard PME simulation, requires to raise the
the multipole order to about eight.

For typical biomolecular systems (proteins in solution) of up to 30 million particles
in size, the GROMACS 2019 performance with our CUDA FMM is about a third of
that with PME on a single GPU node. However, for systems with larger dimensions
and nonuniform particle distributions, as our ≈ 100, 000 atom aerosol/multi-droplet
example, FMM easily outperforms PME already at small particle numbers. Here,
the huge memory requirements for the FFT grid become the limiting factor for PME.

GemsFmm is a completely independent FMM implementation, which also runs
exclusively on the GPU and which uses the same operators for the far field evalua-
tions as our implementation. Our GPU FMM outperforms GemsFMM by a factor
of about eight. Unfortunately, further comparisons were not possible because we
did not find additional ready-to-use FMM codes that provide verifiable results.

One of the drawbacks of the FMM is that it does not intrinsically allow for non-

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

112

cubic simulation boxes with periodic boundaries. For non-cubic boxes the governing
octree structure of the FMM would have to be re-designed,? requiring further op-
timizations if the level of achieved performance is to be maintained. Moreover, for
typical biomolecular simulation systems of proteins in solution, the single-node GPU
FMM is still slower than the highly optimized GROMACS GPU PME implementa-
tion; however, single-node GPU FMM can handle larger particle systems and larger
simulation boxes.

One of the advantages of FMM electrostatics over PME is that also open bound-
aries can be handled, however, the FMM’s main strength will become apparent on
larger exascale clusters of GPU nodes, where PME scaling breaks down due to its
inherent communication bottleneck. In combination with the demonstrated high
single-GPU performance of this implementation, the performance of a parallelized
FMM should eventually beat PME. For large sparse systems, FMM already outper-
forms PME on a single GPU. Additionally, due to FMM’s flexible octree structure
that allows to easily evaluate local energy differences, λ–dynamics calculations, as
needed for MD simulations at constant pH, can be implemented without much com-
putational overhead.?

The next step towards higher FMM performance will be a parallel implementa-
tion for multiple GPUs. As the FMM communication requirement is small com-
pared to PME, we expect a parallelized FMM to scale significantly better than
PME with the number of GPUs. Additionally, harnessing new CUDA program-
ming features like persistent threads and CUDA Graphs should be beneficial also
for single-node GPU performance. Considering large sparse systems, additional op-
timizations should yield even more speedup because the current implementation was
only slightly adopted to handle non-uniform particle distributions.

Appendix

A modified version of GROMACS that includes our CUDA FMM is available for
download; please follow the instructions at https://www.mpibpc.mpg.de/grubmueller/
sppexa.

Acknowledgments

This study was supported by the DFG priority programme Software for Exascale
Computing (SPP 1648). The multi-droplet system was provided by Frank Wieder-
schein. Many thanks to Ivo Kabadshow for sharing his insights on FMM error
behavior.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

113

References

[] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70,
2008.

[] B. Abel, A. Charvat, U. Diederichsen, M. Faubel, B. Girmann, J. Niemeyer,
and A. Zeeck. Applications, features, and mechanistic aspects of liquid water
beam desorption mass spectrometry. Int. J. Mass Spectrom., 243(2):177–188,
2005.

[] M. J. Abraham and J. E. Gready. Optimization of parameters for molecular
dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J.
Comput. Chem., 32(9):2031–2040, 2011.

[] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lin-
dahl. GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX, pages 19–25, 2015.
ISSN 2352-7110. doi: 10.1016/j.softx.2015.06.001.

[] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi.
Task-based fmm for heterogeneous architectures. Concurrency and Computa-
tion: Practice and Experience, 28(9):2608–2629, 2016.

[] Y. Andoh, N. Yoshii, K. Fujimoto, K. Mizutani, H. Kojima, A. Yamada,
S. Okazaki, K. Kawaguchi, H. Nagao, K. Iwahashi, F. Mizutani, K. Minami,
S.-i. Ichikawa, H. Komatsu, S. Ishizuki, Y. Takeda, and M. Fukushima. Mody-
las: A highly parallelized general-purpose molecular dynamics simulation pro-
gram for large-scale systems with long-range forces calculated by fast multipole
method (fmm) and highly scalable fine-grained new parallel processing algo-
rithms. Journal of Chemical Theory and Computation, 9(7):3201–3209, 2013.
doi: 10.1021/ct400203a. URL https://doi.org/10.1021/ct400203a. PMID:
26583997.

[] Y. Andoh, N. Yoshii, and S. Okazaki. Extension of the fast multipole method
for the rectangular cells with an anisotropic partition tree structure. J. Com-
put. Chem., 41(14):1353–1367, 2020. doi: 10.1002/jcc.26180. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26180.

[] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann,
M. Pippig, D. Potts, and G. Sutmann. Comparison of scalable fast meth-
ods for long-range interactions. Phys. Rev. E, 88:063308, Dec 2013. doi:
10.1103/PhysRevE.88.063308. URL https://link.aps.org/doi/10.1103/

PhysRevE.88.063308.

[] H. J. Berendsen, J. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak.
Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81(8):
3684–3690, 1984.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

114

[] P. Blanchard, B. Bramas, O. Coulaud, E. Darve, L. Dupuy, A. Etcheverry, and
G. Sylvand. ScalFMM: A Generic Parallel Fast Multipole Library. In SIAM
Conference on Computational Science and Engineering (SIAM CSE 2015), Salt
Lake City, United States, 2015. URL https://hal.inria.fr/hal-01135253.

[] J. A. Board, C. W. Humphres, C. G. Lambert, W. T. Rankin, and A. Y.
Toukmaji. Ewald and multipole methods for periodic n-body problems. In
P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel,
editors, Computational Molecular Dynamics: Challenges, Methods, Ideas, pages
459–471. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-642-
58360-5.

[] L. Bock, C. Blau, G. Schröder, I. Davydov, N. Fischer, H. Stark, M. Rodnina,
A. Vaiana, and H. Grubmüller. Energy barriers and driving forces in tRNA
translocation through the ribosome. Nat. Struct. Mol. Biol., 20:1390–1396,
2013. URL http://hdl.handle.net/11858/00-001M-0000-0014-F59E-4.

[] D. Borwein, J. M. Borwein, and K. F. Taylor. Convergence of lattice sums and
madelungs constant. J. Math. Phys., 26(11):2999–3009, 1985. doi: 10.1063/1.
526675. URL https://doi.org/10.1063/1.526675.

[] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst. hwloc: A generic framework for managing hard-
ware affinities in hpc applications. In Parallel, Distributed and Network-Based
Processing (PDP), 2010, 18th Euromicro International Conference on, pages
180–186. IEEE, 2010.

[] G. Bussi, T. Zykova-Timan, and M. Parrinello. Isothermal-isobaric molecular
dynamics using stochastic velocity rescaling. J. Chem. Phys., 130(7):074101,
2009.

[] C. Caleman, J. S. Hub, P. J. van Maaren, and D. van der Spoel. Atomistic sim-
ulation of ion solvation in water explains surface preference of halides. PNAS,
108(17):6838–6842, 2011.

[] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole al-
gorithm in three dimensions. J. Comput. Phys., 155(2):468 – 498, 1999.
ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1999.6355. URL http:

//www.sciencedirect.com/science/article/pii/S0021999199963556.

[] R. E. Crandall. New representations for the madelung constant. Experimental
Mathematics, 8(4):367–379, 1999. doi: 10.1080/10586458.1999.10504625. URL
https://doi.org/10.1080/10586458.1999.10504625.

[] C. D. Daub and N. M. Cann. How are completely desolvated ions produced in
electrospray ionization: insights from molecular dynamics simulations. Anal.
Chem., 83(22):8372–8376, 2011.

[] J. M. Dawson. Particle simulation of plasmas. Rev. Mod. Phys., 55:403–447,
Apr 1983.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

115

[] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang,
P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman. A point-
charge force field for molecular mechanics simulations of proteins based on
condensed-phase quantum mechanical calculations. J. Comput. Chem., 24(16):
1999–2012, 2003.

[] U. Essmann, L. Perera, M. Berkowitz, T. Darden, and H. Lee. A smooth
particle mesh Ewald method. J. Chem. Phys., 1995. URL http://dx.doi.

org/10.1063/1.470117.

[] W. Fong and E. Darve. The black-box fast multipole method. J. Comput. Phys.,
228(23):8712 – 8725, 2009. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.
2009.08.031. URL http://www.sciencedirect.com/science/article/pii/

S0021999109004665.

[] M. Frigo and S. G. Johnson. The design and implementation of fftw3. Proc.
IEEE, 93(2):216–231, 2005.

[] A. G. Garcia, A. Beckmann, and I. Kabadshow. Accelerating an FMM-
Based Coulomb Solver with GPUs, pages 485–504. Springer International
Publishing, Berlin, Heidelberg, 2016. ISBN 978-3-319-40528-5. doi: 10.1007/
978-3-319-40528-5 22.

[] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
J. Comput. Phys., 73(2):325 – 348, 1987. ISSN 0021-9991. doi: https:
//doi.org/10.1016/0021-9991(87)90140-9. URL http://www.sciencedirect.

com/science/article/pii/0021999187901409.

[] L. Greengard and V. Rokhlin. A new version of the fast multipole method for
the laplace equation in three dimensions. Acta Numerica, 6:229269, 1997. doi:
10.1017/S0962492900002725.

[] N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics pro-
cessors. J. Comput. Phys., 227(18):8290 – 8313, 2008. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2008.05.023. URL http://www.sciencedirect.

com/science/article/pii/S0021999108002921.

[] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. GROMACS 4: Algo-
rithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J. Chem. Theory Comput., 2008.

[] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.
Klein. Comparison of simple potential functions for simulating liquid water. J.
Chem. Phys., 79(2):926–935, 1983.

[] J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin,
M. Wall, A. Lappala, D. Phillips, W. Fischer, C.-S. Tung, T. Schlick, Y. Sugita,
and K. Y. Sanbonmatsu. Scaling molecular dynamics beyond 100,000 processor
cores for large-scale biophysical simulations. J. Comput. Chem., 2019.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

116

[] I. Kabadshow. Periodic boundary conditions and the error-controlled fast mul-
tipole method, volume 11. Forschungszentrum Jülich, 2012.

[] D. Kim, N. Wagner, K. Wooding, D. E. Clemmer, and D. H. Russell. Ions from
solution to the gas phase: a molecular dynamics simulation of the structural
evolution of substance P during desolvation of charged nanodroplets generated
by electrospray ionization. J. Am. Chem. Soc., 139(8):2981–2988, 2017.

[] B. Kohnke, C. Kutzner, A. Beckmann, R. T. Ullmann, G. Lube, I. Kabadshow,
H. Dachsel, and H. Grubmüller. A CUDA Fast Multipole Method with highly
efficient M2L far field evaluation. submitted, volume(number):pages, 2020.

[] B. Kohnke, T. R. Ullmann, A. Beckmann, I. Kabadshow, D. Haensel, L. Mor-
genstern, P. Dobrev, G. Groenhof, C. Kutzner, B. Hess, H. Dachsel, and
H. Grubmüller. GROMEX A scalable and versatile Fast Multipole Method for
biomolecular simulation, pages ?–? Springer International Publishing, Berlin,
Heidelberg, 2020.

[] L. Konermann, H. Metwally, R. G. McAllister, and V. Popa. How to run
molecular dynamics simulations on electrospray droplets and gas phase proteins:
Basic guidelines and selected applications. Methods, 144:104–112, 2018.

[] K. N. Kudin and G. E. Scuseria. A fast multipole method for periodic systems
with arbitrary unit cell geometries. Chem. Phys. Lett., 283(1–2):61–68, 1998.

[] C. Kutzner, D. van der Spoel, M. Fechner, E. Lindahl, U. Schmitt, B. de Groot,
and H. Grubmüller. Speeding up parallel GROMACS on high-latency networks.
J. Comput. Chem., 2007.

[] C. Kutzner, R. Apostolov, B. Hess, and H. Grubmüller. Scaling of the GRO-
MACS 4.6 molecular dynamics code on SuperMUC. In M. Bader, A. Bode,
and H. J. Bungartz, editors, Parallel Computing: Accelerating Computa-
tional Science and Engineering (CSE), pages 722–730. IOS Press, Amster-
dam/Netherlands, 2014. doi: 10.3233/978-1-61499-381-0-722.

[] C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and
H. Grubmüller. More bang for your buck: Improved use of GPU nodes
for GROMACS 2018. J. Comput. Chem., 40(27):2418–2431, 2019. doi:
10.1002/jcc.26011.

[] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,
A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros. A massively
parallel adaptive fast-multipole method on heterogeneous architectures. In SC
’09: Proc. of the Conference on High Performance Computing Networking,
Storage and Analysis, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605587448. doi: 10.1145/1654059.1654118. URL https:

//doi.org/10.1145/1654059.1654118.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

117

[] W. Luedtke, U. Landman, Y.-H. Chiu, D. Levandier, R. Dressler, S. Sok, and
M. S. Gordon. Nanojets, electrospray, and ion field evaporation: Molecular
dynamics simulations and laboratory experiments. J. Phys. Chem. A, 112(40):
9628–9649, 2008.

[] E. G. Marklund and J. L. Benesch. Weighing-up protein dynamics: the combi-
nation of native mass spectrometry and molecular dynamics simulations. Curr.
Opin. Struct. Biol., 54:50–58, 2019.

[] T. Meyer, V. Gabelica, H. Grubmüller, and M. Orozco. Proteins in the gas
phase. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 3(4):408–425, 2013.

[] M. E. Mura and N. C. Handy. Cuboidal basis functions. Theor. Chim. Acta,
90(2-3):145–165, 1995.

[] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with cuda. Queue, 6(2):40–53, Mar. 2008. ISSN 1542-7730. doi: 10.1145/
1365490.1365500. URL http://doi.acm.org/10.1145/1365490.1365500.

[] Y. Ohno, R. Yokota, H. Koyama, G. Morimoto, A. Hasegawa, G. Masumoto,
N. Okimoto, Y. Hirano, H. Ibeid, T. Narumi, and M. Taiji. Petascale molecular
dynamics simulation using the fast multipole method on k computer. Computer
Physics Communications, 185(10):2575 – 2585, 2014. ISSN 0010-4655. doi:
https://doi.org/10.1016/j.cpc.2014.06.004. URL http://www.sciencedirect.

com/science/article/pii/S0010465514002082.

[] S. Páll and B. Hess. A flexible algorithm for calculating pair interactions on
SIMD architectures. Comput. Phys. Commun., 184(12):2641–2650, dec 2013.
ISSN 00104655. doi: 10.1016/j.cpc.2013.06.003.

[] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tackling exascale
software challenges in molecular dynamics simulations with GROMACS. In
S. Markidis and E. Laure, editors, Lect. Notes Comput. Sci. 8759, EASC 2014,
pages 1–25. Springer International Publishing Switzerland, 2015.

[] J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi, T. Rudack,
H. Yu, Z. Wu, and K. Schulten. Molecular dynamics simulations of large macro-
molecular complexes. Curr. Opin. Struct. Biol., 31:64–74, 2015.

[] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. Scalable molecular dynamics
with NAMD. J. Comput. Chem., 26(16):1781–1802, 2005. URL http://www.

ks.uiuc.edu/Research/namd/.

[] D. Potter, J. Stadel, and R. Teyssier. Pkdgrav3: Beyond trillion particle cos-
mological simulations for the next era of galaxy surveys. Comput. Astrophys.
and Cosmology, 4(1):2, 2017.

[] T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, and B. J. Garrison. Molec-
ular dynamics simulation of the laser disintegration of aerosol particles. Anal.
Chem., 72(21):5143–5150, 2000.

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

118

[] H. Schreiber and O. Steinhauser. Cutoff size does strongly influence molecular
dynamics results on solvated polypeptides. Biochemistry, 31(25):5856–5860,
1992.

[] D. Shamshirgar, R. Yokota, A.-K. Tornberg, and B. Hess. Regularizing the fast
multipole method for use in molecular simulation. J. Chem. Phys., 151(23):
234113, 2019. doi: 10.1063/1.5122859.

[] T. Takahashi, C. Cecka, W. Fong, and E. Darve. Optimizing the multipoletolo-
cal operator in the fast multipole method for graphical processing units. Int.
J. Numer. Methods Eng., 89:105 – 133, 01 2012. doi: 10.1002/nme.3240.

[] D. van der Spoel, E. G. Marklund, D. S. Larsson, and C. Caleman. Proteins,
lipids, and water in the gas phase. Macromolecular Bioscience, 11(1):50–59,
2011.

[] R. Yokota and L. A. Barba. Chapter 9 - treecode and fast multipole method
for n-body simulation with cuda. In W. W. Hwu, editor, GPU Computing
Gems Emerald Edition, Applications of GPU Computing Series, pages 113–
132. Morgan Kaufmann, Boston, 2011.

[] R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, and K. Ya-
suoka. Fast multipole methods on a cluster of gpus for the meshless simu-
lation of turbulence. Comput. Phys. Commun., 180(11):2066 – 2078, 2009.
ISSN 0010-4655. doi: https://doi.org/10.1016/j.cpc.2009.06.009. URL http:

//www.sciencedirect.com/science/article/pii/S0010465509001891.

[] M. Zink and H. Grubmüller. Mechanical properties of the icosahe-
dral shell of southern bean mosaic virus: A molecular dynamics study.
Biophys. J., 96:1350–1363, 2009. URL http://hdl.handle.net/11858/

00-001M-0000-000F-9BDD-1.

II. PARALLELIZATION AND ACCURACY / PERFORMANCE EVALUATION
OF THE FMM FOR GROMACS

119

II.3 A GPU-ACCELERATED FAST MULTIPOLE METHOD FOR GROMACS:
PERFORMANCE AND ACCURACY

120

III. CONCLUSIONS AND OUTLOOK

III Conclusions and outlook

Within this work, I implemented a complete CUDA-GPU version of the FMM
algorithm and evaluated its accuracy and performance. Additionally, I optimized
the implementation towards the specific requirements of biomolecular simulations;
however, the standalone variant of the code can be used for any approximation of the
n-body problem with r−1 potential. The implementation utilizes a modern C++11
framework to enable flexible parallelization regarding future multi-node, multi-GPU
implementations. Last but not least, I extended the method to support chemical
variability via λ-dynamics.

III.1 Accuracy of the CUDA FMM

To facilitate usage of the FMM in MD simulations with desired accuracy, we had
to determine proper FMM parameters. To this aim, we verified the correctness of
our FMM for different computational scenarios. Starting with open-boundary tests,
we compared the FMM solution with a reference solution, which was computed
directly in double precision. Afterwards, we used an analytical reference solution
for a simple salt crystal to verify that the periodic part of the method yields a correct
result, too. From that, we observed that FMM with multipole order p = 50 yields
an approximation error in the range of the machine precision error. This observation
allowed to create a periodic reference solution, which was used to compare the error
distributions of the Coulomb forces for PME and FMM with different parameters.
From this comparison, we concluded that a multipole order of seven is sufficient to
achieve an error similar to PME with default settings. To limit the energy drift
to the level of a standard PME simulation, the multipole order of eight is required.
This knowledge allowed for a further performance comparison of the FMM and PME
for MD simulations.

III.2 Performance of the CUDA FMM

The FMM has been completely ported to GPU and incorporated efficiently into
GROMACS to allow using of the method as PME replacement to calculate pairwise
Coulombic interactions. The performance of the single-GPU FMM implementation,
tested in GROMACS 2019, achieves about a third of highly optimized CUDA PME
performance when simulating systems with uniform particle distributions. How-
ever, the usage of the FMM is expected to be beneficial when aiming a massive
parallelization. As the number of particles in MD simulations is mostly of order
O(104) − O(107), a limited number of particles per compute node is expected by
a high number of computational nodes. This requires a strong scaling property of
the underlying method. Hence, the wall clock times per iteration should be in a
latency range of the network communication. In such scenarios, PME reaches its
scaling limit as it requires all-to-all communication. FMM does not suffer from

121

III.2 PERFORMANCE OF THE CUDA FMM

this bottleneck and the underlying GPU implementation should enable an efficient
heterogeneous parallelization on future exascale supercomputers.

An efficient usage of the FMM on a computational node in a parallel environment
requires considerable flexibility of the underlying implementation as, depending on
the hardware specification of a computing node, different portions of the FMM cal-
culation are required to be scheduled as a GPU task. For this reason, I tested
several different parallelization approaches with different amount of parallel gran-
ularity and different work load distributions. The most performance limiting far
field operator, i.e. the M2L operator that has a complexity of O(p4), exposes a lot
of operator parallelism, however, its efficient GPU parallelization is impeded by its
highly non-uniform distributed data. To find an optimal parallelization scheme for
efficient utilization of heterogeneous memory layers provided by a GPU, I tested
a great number of different approaches. Three of them are described in detail in
section II.2. The symmetrical implementation of the M2L operator scales nearly
optimal in the entire tested range of p (1 < p < 21) and its advantage for a single
GPU implementation is evident. However, its future usage in heterogeneous parallel
environments is not straightforward as the implementation incorporates a non-local
tree parallelism. The dynamic approach exposes a lot single operator parallelism and
strictly separates the tree and operator parallelism. Its main bottleneck, launching
latencies of the dynamically spawned kernels, can directly be reduced by statically
grouping the required interactions. Utilizing such grouping makes this approach
suitable for further utilization on heterogeneous clusters. It has also been utilized
to enhance the simulations with non-uniform particle distributions as it allows to
efficiently skip the non interacting parts in a system.

In addition to the far-field operators, the near-field O(n2) part has been also
parallelized in a very flexible way allowing for efficient utilization in case of massive
parallelization. Similar to the M2L method, the most optimized version combines
the tree and the operator parallelism. The compute bound nature of the direct
calculation can be clearly seen in this approach as the achieved FLOP rates are
in a range of the peak performance of the underlying GPU when a single-node
implementation is concerned. However, a different more flexible approach, which
exposes more locality, is supposed to be beneficial in large parallel computations.
Further, its flexibility also allows for calculations between sparsely populated particle
groups in λ-dynamics.

Apart from the mentioned flexible implementation, FMM provides a few intrinsic
assets when compared to the PME method. In contrast to the PME method, which
is periodic by construction, FMM can handle non-periodic systems with negligible
overhead. When considering large dimensional or non-uniformly distributed sys-
tems, FMM outperforms PME already at small particle numbers on a single GPU
node. For such calculations, the performance of the PME is limited by its large
memory requirement for the FFT grid.

The entire FMM implementation can also be used as an efficient standalone library
for solving an arbitrary n-body problem, where interactions are described by the r−1

122

III. CONCLUSIONS AND OUTLOOK

104 105 106 107 108

number of particles n

10−4

10−3

10−2

10−1

100

101
se

co
nd

s
/

st
ep

f(n) ∈ O(n)

GPU FMM scaling

FMM on Tesla V100, single precision

FMM on Tesla V100, double precision

Figure 1: Scaling of the GPU parallelized FMM. The black dashed line shows a
reference O(n) scaling. The red dashed line depicts the approximation of the GPU-
FMM scaling in single precision. Blue and yellow lines denote exact FMM timings
for one calculation step for different octree depths (encircled numbers) in single and
double precision, respectively, for multipole order p = 8.

potential. Figure 1 shows the scaling of the GPU parallelized FMM for multipole
order p = 8. The single-GPU implementation scales linearly with respect to the
number of particles in the whole possible particle range, which is only restricted by
the available memory. The method is efficiently implemented in a single and double
precision what allows for calculations with any desired accuracy up to numerical
precision. It also does not rely on any external libraries providing an uncomplicated
usage and installation process.

III.3 Parallelization and performance of the λ-FMM

To allow for an efficient computation of additional potentials required by the λ-
dynamics algorithm, I incorporated a full λ-dynamics functionality into the existing
CUDA GPU implementation of the FMM. To this end, I created a basic GPU version
of the method that can treat an arbitrary number of titratable sites with an arbi-
trary number of states each. The implementation does not impose any restrictions
considering the spatial distribution of the atoms belonging to particular sites. The
method is not fully optimized yet, but first results show the strength of the FMM in
a λ-dynamics environment. For a relatively large system with half a million particles
and more than a hundred titratable sites, a straightforward approach to compute
all alternative energies requires the repetition of a whole simulation for each state of
all sites. This overhead is linear and it is directly proportional to the number of all
alternative states in all sites. The λ-FMM computes all required energy terms with

123

III. CONCLUSIONS AND OUTLOOK

only a factor of 1.5 slower than a single simulation step. Further improvements of
the GPU implementation are expected to yield even more speedup compared to the
actual implementation.

III.4 Outlook

Further improvements of the single GPU implementation are possible. The most
efficient, symmetrical implementation of the M2L operator can still be enhanced by
exploiting even more symmetry when aiming the best possible performance. With
a new concept of the GPU persistent threads, which provide more synchronization
between different tasks, additional latencies can be hidden, especially when consid-
ering not efficiently parallelizable stages of the FMM. The treatment of systems with
nonuniformly distributed particles can also be enhanced as the existing operators
were only slightly adapted to efficiently deal with sparsely populated FMM boxes.
To expand the FMM usage scenarios, the method should also be extended to sup-
port non-cubic boxes in periodic systems. Following this extension, fractal FMM
tree depths should be implemented to minimize the influence of the local quadratic
scaling of the method.

When considering future multi-node, multi-GPU parallelization of the FMM, new
challenges arise. Whereas FMM will definitely allow to perform efficient multi-node
simulations for much larger MD systems (108 particles and beyond) as FMM octree
structure enables very efficient parallelization, maintaining the strong scaling be-
havior for limited system sizes, which are even more important, is very challenging.
As the number of transistors is doubling nearly every two years and the number of
nodes in computing clusters is also growing, present parallel implementations require
redesigning of the inter-processes communication. In such scenarios, the communi-
cation and memory latencies become the computational bottleneck whereas FLOPS
can be considered as negligible. For the next step towards exascaling, a multi-GPU
FMM is needed. Such implementation will possibly reflect potential communication
bottlenecks in a multi-node environment as the multi-GPU memory hierarchy usage
might indicate communication bottlenecks in further parallelizations.

To enable even more efficient treatment of MD systems with titratable sites, the
existing λ-dynamics implementation needs to be optimized. Despite the actual,
fully working, parallel λ-dynamics version with only a few optimizations serves as a
proof of concept, it already achieves a decent performance in calculating alternative
energies which are needed for updating λ values. However, the existing implemen-
tation requires a complete redesign of memory management since additional sites
introduce very sparse and non-uniform memory patterns, which change rapidly de-
pending on the dynamics of the system. Additionally, most far field operators have
to be started conditionally. This introduces a large overhead especially in latency
bound regime. Nevertheless, we anticipate that further improvements of the parallel
implementation of the λ-dynamics will allow for calculations for systems with a very
large number of titratable sites with only negligible additional costs.

124

REFERENCES

References

[1] A. W. Appel. An efficient program for many-body simulation. SIAM Journal
on Scientific and Statistical Computing, 6(1):85–103, 1985.

[2] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann,
M. Pippig, D. Potts, and G. Sutmann. Comparison of scalable fast methods
for long-range interactions. Phys. Rev. E, 88:063308, 2013.

[3] J. Barnes and P. Hut. A hierarchical o (n log n) force-calculation algorithm.
nature, 324(6096):446–449, 1986.

[4] C. L. Berman. Grid-multipole calculations. SIAM Journal on Scientific Com-
puting, 16(5):1082–1091, 1995.

[5] P. Blanchard, B. Bramas, O. Coulaud, E. Darve, L. Dupuy, A. Etcheverry, and
G. Sylvand. ScalFMM: A Generic Parallel Fast Multipole Library. In SIAM
Conference on Computational Science and Engineering (SIAM CSE 2015), Salt
Lake City, United States, 2015.

[6] J. A. Board, C. W. Humphres, C. G. Lambert, W. T. Rankin, and A. Y.
Toukmaji. Ewald and multipole methods for periodic n-body problems. In
P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel,
editors, Computational Molecular Dynamics: Challenges, Methods, Ideas, pages
459–471. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[7] L. Bock, C. Blau, G. Schröder, I. Davydov, N. Fischer, H. Stark, M. Rodnina,
A. Vaiana, and H. Grubmüller. Energy barriers and driving forces in tRNA
translocation through the ribosome. Nat. Struct. Mol. Biol., 20:1390–1396,
2013.

[8] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen,
J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon,
Y. Shan, and D. E. Shaw. Scalable algorithms for molecular dynamics simu-
lations on commodity clusters. In SC’06: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, pages 43–43. IEEE, 2006.

[9] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math-
ematics of computation, 31(138):333–390, 1977.

[10] C. L. Brooks III, B. M. Pettitt, and M. Karplus. Structural and energetic effects
of truncating long ranged interactions in ionic and polar fluids. The Journal of
chemical physics, 83(11):5897–5908, 1985.

[11] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm
in three dimensions. Journal of computational physics, 155(2):468–498, 1999.

[12] J. M. Dawson. Particle simulation of plasmas. Rev. Mod. Phys., 55:403–447,
Apr 1983.

125

REFERENCES

[13] S. Donnini, F. Tegeler, G. Groenhof, and H. Grubmüller. Constant ph molecular
dynamics in explicit solvent with λ-dynamics. Journal of Chemical Theory and
Computation, 7(6):1962–1978, Jun 2011.

[14] M. Eichinger, H. Grubmüller, H. Heller, and P. Tavan. Famusamm: An algo-
rithm for rapid evaluation of electrostatic interactions in molecular dynamics
simulations. Journal of Computational Chemistry, 18(14):1729–1749, 1997.

[15] W. D. Elliott and J. A. Board, Jr. Fast fourier transform accelerated fast
multipole algorithm. SIAM Journal on Scientific Computing, 17(2):398–415,
1996.

[16] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Peder-
sen. A smooth particle mesh ewald method. The Journal of chemical physics,
103(19):8577–8593, 1995.

[17] P. P. Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale.
Annalen der physik, 369(3):253–287, 1921.

[18] R. Feynman, R. Leighton, and M. Sands. The Feynman Lectures on Physics:
Mainly mechanics, radiation, and heat. Number Bd. 1-3 in Addison-Wesley
world student series. Addison-Wesley Publishing Company, 1963.

[19] W. Fong and E. Darve. The black-box fast multipole method. Journal of
Computational Physics, 228(23):8712–8725, 2009.

[20] A. G. Garcia, A. Beckmann, and I. Kabadshow. Accelerating an fmm-based
coulomb solver with gpus. In Software for Exascale Computing-SPPEXA 2013-
2015, pages 485–504. Springer, 2016.

[21] M. González. Force fields and molecular dynamics simulations. École
thématique de la Société Française de la Neutronique, 12:169–200, 2011.

[22] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal
of computational physics, 73(2):325–348, 1987.

[23] N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics pro-
cessors. Journal of Computational Physics, 227(18):8290–8313, 2008.

[24] Z. Guo, C. Brooks, and X. Kong. Efficient and flexible algorithm for free energy
calculations using the λ-dynamics approach. J. Phys. Chem. B, 102(11):2032–
2036, 1998.

[25] T. Hansson, C. Oostenbrink, and W. van Gunsteren. Molecular dynamics sim-
ulations. Curr. Opin. Struct. Biol., 12(2):190–196, 2002.

[26] P. Henri. Sur le problème des trois corps et les équations de la dynamique [Texte
imprimé] / par H. Poincaré. s.n, S.l, 1889.

[27] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. GROMACS 4: Algo-
rithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J. Chem. Theory Comput., 2008.

126

REFERENCES

[28] J. L. Knight and C. L. Brooks III. λ-dynamics free energy simulation methods.
J. Comput. Chem., 30(11):1692–1700, 2009.

[29] B. Kohnke, T. R. Ullmann, A. Beckmann, I. Kabadshow, D. Haensel, L. Mor-
genstern, P. Dobrev, G. Groenhof, C. Kutzner, B. Hess, et al. Gromex: A scal-
able and versatile fast multipole method for biomolecular simulation. In Soft-
ware for Exascale Computing-SPPEXA 2016-2019, pages 517–543. Springer,
Cham, 2020.

[30] X. Kong and L. Brooks III, Charles. λ-dynamics: A new approach to free
energy calculations. J. Chem. Phys., 105:2414–2423, 1996.

[31] C. Kutzner, R. Apostolov, B. Hess, and H. Grubmüller. Scaling of the GRO-
MACS 4.6 molecular dynamics code on SuperMUC. In M. Bader, A. Bode,
and H. J. Bungartz, editors, Parallel Computing: Accelerating Computa-
tional Science and Engineering (CSE), pages 722–730. IOS Press, Amster-
dam/Netherlands, 2014.

[32] C. Kutzner, D. van der Spoel, M. Fechner, E. Lindahl, U. Schmitt, B. de Groot,
and H. Grubmüller. Speeding up parallel GROMACS on high-latency networks.
J. Comput. Chem., 2007.

[33] T. J. Lane, D. Shukla, K. A. Beauchamp, and V. S. Pande. To milliseconds
and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct.
Biol., 23(1):58–65, 2013.

[34] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,
A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros. A massively paral-
lel adaptive fast-multipole method on heterogeneous architectures. In Proceed-
ings of the Conference on High Performance Computing Networking, Storage
and Analysis, pages 1–12. IEEE, 2009.

[35] P. E. Lopes, O. Guvench, and A. D. MacKerell. Current status of protein force
fields for molecular dynamics simulations. In Molecular modeling of proteins,
pages 47–71. Springer, 2015.

[36] L. Monticelli and D. P. Tieleman. Force Fields for Classical Molecular Dynam-
ics, pages 197–213. Humana Press, Totowa, NJ, 2013.

[37] J. Nicolas, K. Gubbins, W. Streett, and D. Tildesley. Equation of state for the
lennard-jones fluid. Molecular Physics, 37(5):1429–1454, 1979.

[38] C. Niedermeier and P. Tavan. Fast version of the structure adapted multipole
method–efficient calculation of electrostatic forces in protein dynamics. Molec-
ular simulation, 17(1):57–66, 1996.

[39] M. Patra, M. Karttunen, M. T. Hyvönen, E. Falck, and I. Vattulainen. Lipid
bilayers driven to a wrong lane in molecular dynamics simulations by sub-
tle changes in long-range electrostatic interactions. The Journal of Physical
Chemistry B, 108(14):4485–4494, 2004.

127

REFERENCES

[40] F. Paul, C. Wehmeyer, E. T. Abualrous, H. Wu, M. D. Crabtree, J. Schöneberg,
J. Clarke, C. Freund, T. R. Weikl, and F. Noé. Protein-peptide association ki-
netics beyond the seconds timescale from atomistic simulations. Nat. Commun.,
8(1):1–10, 2017.

[41] D. Potter, J. Stadel, and R. Teyssier. PKDGRAV3: Beyond trillion particle
cosmological simulations for the next era of galaxy surveys. Comput. Astrophys.
and Cosmology, 4(1):2, 2017.

[42] W. Qiu-Dong. The global solution of the n-body problem. Celestial Mechanics
and Dynamical Astronomy, 50(1):73–88, Mar 1990.

[43] C. Sagui and T. Darden. Multigrid methods for classical molecular dynamics
simulations of biomolecules. The Journal of Chemical Physics, 114(15):6578–
6591, 2001.

[44] T. Takahashi, C. Cecka, W. Fong, and E. Darve. Optimizing the multipole-
to-local operator in the fast multipole method for graphical processing units.
International Journal for Numerical Methods in Engineering, 89(1):105–133,
2012.

[45] C. A. White and M. Head-Gordon. Rotating around the quartic angular mo-
mentum barrier in fast multipole method calculations. The Journal of Chemical
Physics, 105(12):5061–5067, 1996.

[46] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole
algorithm in two and three dimensions. Journal of Computational Physics,
196(2):591–626, 2004.

[47] R. Yokota, L. A. Barba, T. Narumi, and K. Yasuoka. Petascale turbulence
simulation using a highly parallel fast multipole method on gpus. Computer
Physics Communications, 184(3):445–455, 2013.

[48] R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, and K. Yasuoka.
Fast multipole methods on a cluster of gpus for the meshless simulation of
turbulence. Computer Physics Communications, 180(11):2066–2078, 2009.

128

