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ABSTRACT: Time-lagged independent component analysis (tICA) is a widely
used dimension reduction method for the analysis of molecular dynamics (MD)
trajectories and has proven particularly useful for the construction of protein
dynamics Markov models. It identifies those “slow” collective degrees of freedom
onto which the projections of a given trajectory show maximal autocorrelation for
a given lag time. Here we ask how much information on the actual protein
dynamics and, in particular, the free energy landscape that governs these dynamics
the tICA-projections of MD-trajectories contain, as opposed to noise due to the
inherently stochastic nature of each trajectory. To answer this question, we have
analyzed the tICA-projections of high dimensional random walks using a
combination of analytical and numerical methods. We find that the projections resemble cosine functions and strongly depend on
the lag time, exhibiting strikingly complex behavior. In particular, and contrary to previous studies of principal component
projections, the projections change noncontinuously with increasing lag time. The tICA-projections of selected 1 μs protein
trajectories and those of random walks are strikingly similar, particularly for larger proteins, suggesting that these trajectories contain
only little information on the energy landscape that governs the actual protein dynamics. Further the tICA-projections of random
walks show clusters very similar to those observed for the protein trajectories, suggesting that clusters in the tICA-projections of
protein trajectories do not necessarily reflect local minima in the free energy landscape. We also conclude that, in addition to the
previous finding that certain ensemble properties of nonconverged protein trajectories resemble those of random walks; this is also
true for their time correlations.

1. INTRODUCTION

The atomistic dynamics of proteins, protein complexes, and
other biomolecules is exceedingly complex, covering time scales
from subpicoseconds to up to hours.1,2 It is governed by a
similarly complex high-dimensional free energy landscape or
funnel,3 characterized by a hierarchy of free energy barriers,4 and
has been widely studied computationally by molecular dynamics
(MD) simulations.5 With particle numbers ranging from several
hundreds to hundreds of thousands or more,6−9 the
correspondingly high-dimensional configuration space of the
system poses considerable challenges to a fundamental under-
standing of biomolecular function, for example, of the
conformational motions of these biological “nanoma-
chines”,10,11 protein folding,12 or specific binding.
Several attempts to reduce the dimensionality of the dynamics

have addressed this issue. Most notable approaches are principal
component analysis (PCA) to extract the essential dynamics13

of the protein that contributes most to the atomic fluctuations,
and time-lagged independent component analysis (tICA),
which identifies those collective degrees of freedom that exhibit
the strongest time-correlations for a given lag-time.14,15 Both
dimension reduction techniques can yield information on the
conformational dynamics of a protein, that is, how the protein
moves through several conformational substates, which can be

defined as metastable conformations characterized by local free
energy minima.16

This property also renders these dimension reduction
techniques highly useful as a preprocessing step to describing
the conformational dynamics of macromolecules in terms of a
discrete Markov process.17−19 Currently tICA is most widely
used, and it is preferred over PCA for this purpose20 because it
additionally uses time information on the input trajectory.
In this context, both PCA and tICA rely onMD trajectories as

input, which raises the question how much of these analyses is
determined by actual information on the protein dynamics, as
opposed to noise due to the inherently stochastic nature of each
trajectory, and, importantly, how these two can be quantified.
For PCA, this question has been answered by analysis of the

principal components of a high-dimensional random walk in a
flat energy landscape.21,22 Unexpectedly, these turned out to
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approximate cosine functions, thus providing a very powerful
criterion for the convergence of MD trajectories: The more an
MD trajectory resembles a cosine, quantified by the cosine
content,21 the more it resembles a random walk, and the less
information it contains on the actual protein dynamics or the
underlying free energy landscape.
These analyses21,22 have also suggested that clusters observed

in low-dimensional PCA projections do not necessarily imply
the existence of conformational substates and, instead, may also
be a stochastic and/or projection artifact. Particularly the latter
finding is highly relevant for the use of PCA for the construction
of Markov models,19 which thus may also in part reflect the
randomness of one or several trajectories. Note that this holds
also truealbeit probably to a lesser extentfor the
construction of Markov models from several or many
trajectories, as these have to be spawned from a seeding
trajectory or from starting structures generated from other
advanced sampling methods.16,23−25

For tICA, no such analysis is available, but the inspection of
several examples suggests that similar effects may also be at
work.26,27 To address this issue, here we will therefore analyze
the tICA-projections of high dimensional random walks, and
subsequently compare them to tICA-projections of selected
protein trajectories. In particular, we will semianalytically derive
an expression for random walk tICA-projections, which will
prove analogous to the PCA cosine functions and thus can also
serve as a criterion for convergence as well as for the quality of
derived Markov models. Unexpectedly, and contrary to the
regular behavior of random walk PCA projections, tICA-
projections turn out to display much more complex behavior. In
particular, we observed critical lag times at which the random
walk projections change drastically and  for high dimensions
 even discontinuously. The resulting much richer and more
intricate structure of random walk projections renders the
proper interpretation of tICA-projections of protein dynamics
trajectories particularly challenging, and has profound implica-
tions for the proper constructions of Markov models.

2. THEORETICAL ANALYSIS AND METHODS
2.1. Definition of tICA. To establish notation, we briefly

summarize the basic principle of tICA; for a more
comprehensive treatment with particular focus on molecular
dynamics applications, see ref 28.
C o n s i d e r a d - d i m e n s i o n a l t r a j e c t o r y

= ∈t x t x tx( ) ( ( ), ..., ( ))d
d

1
T  with Cartesian coordinates

x1, ..., xd, which for compact notation we assume to be mean-
free, that is, the time average ⟨x(t)⟩t is zero. TICA determines
those “slowest” independent collective degrees of freedom

∈vk
d , k = 1, ..., d, onto which the projections yk(t) = vk·x(t)

have the largest time-autocorrelation

τ⟨ + ⟩

⟨ ⟩

y t y t

y t

( ) ( )

( )
k k t

k t
2

where τ is a chosen lag time. Equivalently, using the time-lagged
covariance matrix

τ τ= ⟨ + ⟩ ∈ ×x t x tC( ) ( ( ) ( ) )i j t ij
d d

each degree of freedom vk maximizes

τv C v
v C v

( )
(0)

k k

k k

T

T

under the constraint that it is orthogonal to all previous degrees
of freedom. Hence, the vk are the solutions of the generalized
eigenvalue problem

τ λ=C v C v( ) (0)k k k (1)

We will use the term “tICA-eigenvector” for the vk and “tICA-
projection” for the projections yk onto the tICA-eigenvectors. In
the literature, the term “tICA-component” is often used, but it is
somewhat ambiguous and we will therefore avoid it.
For an infinite trajectory of a time-reversible system the

matrices in this eigenvalue problem are symmetric. However, for
the finite trajectories considered here, with time steps t = 1, ..., n,
the matrix C(τ) is usually not symmetric. There are two slightly
different symmetrization methods that circumvent this problem.
The more popular one, which we denote the “main” method,
uses an estimator that replaces the simple time-lagged averages
mentioned by averages over all pairs (xt, xt+τ) and (xt+τ, xt),
following, for example, Noe ́28 and the popular software package
PyEMMA.29 As a result, on the left-hand side of eq 1 C(τ) is
replaced with

i

k

jjjjjjj
i

k
jjjjjj

y

{
zzzzzz
y

{

zzzzzzz∑ ∑

τ τ τ

τ
τ τ

= +

=
−

+ + +
τ τ

=

−

=

−

n
x t x t x t x t

C C C( )
1
2

( ( ) ( ) )

1
2

1
( ) ( ) ( ) ( )

t

n

i j
t

n

i j

ij

sym
T

1 1

and on the right-hand side C(0) is replaced with

i

k

jjjjjjj
i

k
jjjjjj

y

{
zzzzzz
y

{

zzzzzzz∑ ∑
τ

τ τΣ =
−

+ + +
τ τ

=

−

=

−

n
x t x t x t x t1

2
1

( ) ( ) ( ) ( )
t

n

i j
t

n

i j

ij1 1

yielding a symmetrized version of eq 1 with real eigenvalues,

τ λ Σ=C v v( ) k k ksym (2)

The second “alternative” symmetrized version of eq 1 only
differs on the right-hand side, whereC(0) is not replaced withΣ,

τ λ=C v C v( ) (0)k k ksym (3)

Our analysis is very similar for both versions, though with
unexpectedly different results.

2.2. Theory. To render this symmetrized generalized
eigenvalue problem more amenable to analysis, and following
ref 30, we define a matrix formed from the trajectory

i

k

jjjjjjjjjj

y

{

zzzzzzzzzz
=

| | |

| | |

nX x x x(1) (2) ... ( )

as well as a shorter time-lagged matrix

i

k

jjjjjjjjjj

y

{

zzzzzzzzzz
τ τ=

| | |
+ +

| | |

nX x x x( 1) ( 2) ... ( )lag

and one that is cut off at the end

i

k

jjjjjjjjjj

y

{

zzzzzzzzzz
τ=

| | |
−

| | |

nX x x x(1) (2) ... ( )cut

The latter two matrices serve to rewrite the above left and right-
hand sides,

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00273
J. Chem. Theory Comput. 2021, 17, 5766−5776

5767

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00273?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


τ
τ

=
−

+
n

C X X X X( )
1
2

1
( )sym cut lag

T
lag cut

T

and

τ
Σ =

−
+

n
X X X X

1
2

1
( )lag lag

T
cut cut

T

and, hence, also the symmetrized tICA-equation,

λ+ = +X X X X v X X X X v( ) ( )k k kcut lag
T

lag cut
T

lag lag
T

cut cut
T

(4)

This defining eq 4 for tICA can be converted into a more
convenient form using the matrices

Noting that

+ =

+ =X

X X X X XAX

X X X XBX

( ) ,

( ) T
cut lag

T
lag cut

T T

lag lag
T

cut cut
T

and eq 4 reads

λ=XAX v XBX vk k k
T T

(5)

This can be transformed into a normal eigenvalue problem using
the AMUSE-algorithm31,32 as follows. First diagonalize the
right-hand side by an orthogonal matrixQ and a diagonal matrix
Λ such that

Λ=Q XBX QT T

Substituting vk = Wuk, with W = QΛ−1/2, and assuming all
diagonal elements of Λ are nonzero, yields

λ=XAX Wu XBX Wuk k k
T T

Note that this assumption is actually not necessarily true here,
but since we are only interested in the nonzero eigenvalues and
their eigenvectors the end results will still be correct. SinceW is
invertible, this equation is equivalent to

λ=W XAX Wu W XBX Wuk k k
T T T T

where the matrix on the right-hand side turns out to be the unit
matrix,

Λ Λ Λ ΛΛ= = =− − − −W XBX W Q XBX Q 1T T 1/2 T T 1/2 1/2 1/2

Hence eq 5 simplifies to

λ=W XAX Wu uk k k
T T

(6)

Now consider the following “swapped” version:30

λ=X WW XAy yk k k
T T

(7)

Notably, for each yk satisfying eq 7 there exists a corresponding
eigenvector that solves eq 6. Indeed, choosing uk = WTXAyk
yields

λ λ= = =yW XAX Wu W XAX WW XA W XA y uT
k k k k

T T T T T

Finally, up to normalization, yk is the projection of the trajectory
onto the corresponding vk = Wuk,

λ= = =X v X Wu X WW XAy yk k k k k
T T T T

In other words, the tICA-projections of the trajectory are the
eigenvectors (with nonzero eigenvalues) of the matrix M =
XTWWTXA.
We will use this reformulation of the tICA defining equation

to calculate the tICA-projections of random walks of given finite
dimension and length.

2.3. Random Walks. For the numerical and semianalytical
evaluation of tICA components, random walk trajectories

∈tx( ) d of dimension d were generated by carrying out n
steps according to

+ = + ∼t t t tx x r r( 1) ( ) ( ), ( )

where is a d-dimensional univariate normal distribution
centered at 0. Each trajectory was centered to zero before further
processing. We verified empirically that other fixed probability
distributions withmean 0 and finite variance yield similar results.

2.4. Molecular Dynamics Simulation. For two proteins a
1 μs molecular dynamics trajectory each was analyzed (Andreas
Volkhardt, private communication). Both were generated using
the GROMACS 4.5 software package33 with the Amber ff99SB-
ILDN force field34 and the TIP4P-Ew water model.35 The
starting structures were taken from the PDB36 entries 11AS37

and 2F21,38 respectively. From the latter, only a part of the
structure (theWW-domain) was used. Energyminimization was
performed using steepest descent for 5 × 104 steps. The
hydrogen atomswere described by virtual sites. Each protein was
placed within a triclinic water box using gmx-solvate, such that
the smallest distance between protein surface and box boundary
was larger than 1.5 nm. Natrium and chloride ions were added to
neutralize the system, corresponding a physiological concen-
tration of 150mmol/L. Each systemwas first equilibrated for 0.5
ns in the NVT ensemble, and subsequently for 1.0 ns in the NPT
ensemble at 1 atm pressure and temperature 300 K, both using
an integration time step of 2 fs. The velocity rescaling
thermostat39 and Parrinello−Rahman pressure coupling40

were used with coupling coefficients of τ = 0.1 ps and τ = 1
ps, respectively. All bond lengths of the solute were constrained
using LINCS with an expansion order of 6, and water geometry
was constrained using the SETTLE algorithm. Electrostatic
interactions were calculated using PME,41 with a real space
cutoff of 10 Å and a Fourier spacing of 1.2 Å. The integration
time step was 4 fs, and the coordinates of the alpha carbons were
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saved every 10 ps, such that 105 snapshots were available for each
trajectory. Of these we discarded the first 104 steps, leading to
trajectories of length n = 9 ×104.

3. RESULTS AND DISCUSSION
To characterize the tICA components and projections of
random walks, we will proceed in two steps. We will first analyze
a special case, for which some analytical results can be obtained.
Second, we will use the obtained insights to generalize this result
to random walks of arbitrary length n and dimension d using a
combined analytical/numerical approach. Subsequently, we will
compare the obtained randomwalk projections to tICA analyses
of biomolecular trajectories.
3.1. A Special Case. To gain first insight into the tICA

components of a random walk, first consider the special case d =
n, which allows for an almost fully analytical approach. In this

case, all matrices in eq 7 are square and, assuming that X is
invertible,

= = =− − − − −X WW X X XBX X X X B X X B( )T T T T 1 T T 1 1 1

such that eq 7 becomes independent of X,

λ=−B Ay yk k k
1

(8)

Note that the assumption that X is invertible is not strictly
correct, as it has one zero-eigenvalue associated with the
eigenvector given by y0 = (1, ..., 1)T. This is also an eigenvector
of B−1A, but instead with eigenvalue 1. Therefore, all the
eigenvectors and all but one eigenvalue of eq 7 are identical to
those of eq 8, and the analysis can proceed using eq 8.
In the limit of large n, and using the above definitions for A

and B, the matrix B−1A approaches a circulant matrix with the

Figure 1. First two “expected” tICA-projections of random walks of dimension d = 50 with n = 1000 time steps for varying lag time τ, computed with
the averaging method from section 3.2 using a sample of 20 000 random walks. For each τ, the first tICA-projection is shown on the x-axis and the
second one on the y-axis.
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property that each of its columns is a cyclic permutation of the
preceding one. It differs from a circulant matrix only at the four
“corners” (of size τ) of the matrix, and for large n = d these
“corners” become small relative to the size of the matrix. More
precisely, B−1A and the circulant matrix are asymptotically
equivalent as defined in ref 42.
Circulant matrices are diagonalized by the Fourier trans-

form,43 yielding eigenvectors

i
k
jjj

y
{
zzzω ω ω ω π̃ = =− k

n
y (1, , , ..., ), exp 2 ik k k k

n
k

2 1

and eigenvalues

i
k
jjj

y
{
zzzλ

ω ω
π τ=

+
=

τ τ− k
n2

cos 2k
k k

n

(9)

These eigenvectors are complex, but since λk = λn−k and ỹk = ỹn−k* ,
the real and imaginary part of ỹk (cosine and sine) are real
eigenvectors for the same eigenvalues. Depending on τ and n,
many of these eigenvalues are equal, since they only depend on
τk mod n.
This result implies that for large n = d the eigenvalues ofB−1A

approach those of the circulant matrix. More precisely, their
eigenvalues are asymptotically equally distributed.42 In contrast,
the eigenvectors are only preserved in limits or under small
perturbations if the respective adjacent eigenvalues are well-
separated from each other.44 For the case at hand, however, this
eigenvalue separation very quickly approaches zero for small k
and large n (and for other k with |cos(2πτk/n)| ≈ 1). As a result,
the eigenvectors ofB−1A for small k (and other k as before) differ
from those of the circulant matrix even in this limit. Rather, they
need to be represented as approximate linear combinations of

Figure 2. First two “expected” tICA-projections, for the alternative symmetrization method, of random walks of dimension d = 50 with n = 1000 time
steps for varying lag time τ, computed with the averaging method from section 3.2 using a sample of 20 000 random walks. For each τ, the first tICA-
projection is shown on the x-axis and the second one on the y-axis.
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those eigenvectors of the circulant matrix with similar
eigenvalues.
This subtlety contributes to the complexity of the problem as

well as of the solution, and has so far has prohibited us from
proceeding further purely analytically both for finite d = n as well
as for d = n → ∞. Nevertheless, the eigenvalue problem eq 8
provides a good starting point for a numerical approach. Still, the
degeneracy discussed above needs to be taken properly into
account, as the numerical eigenvectors are essentially arbitrarily
chosen from the eigenspaces.
Inspecting the Fourier transforms of the numerical

eigenvectors suggests that the eigenspaces of eq 8 for small k
each contain an eigenvector that resembles a cosine function

i
k
jjj

y
{
zzzπ≈y t

tk
n

( ) cosk

with increasing accuracy for increasing n.
Another effect of the poor separation of the eigenvalues is that

the above results are very sensitive to small changes to the matrix
in eq 8. For example, when the alternative symmetrization
method defined by eq 3 is used, the analysis in section 2.2 is
unchanged, except that all diagonal entries of B become 2, and eq
8 reads

λ=Ay y
1
2 k k k

For n = d→∞, the same circulant matrix is obtained, such that
the eigenvalues, eq 9, are unchanged. The numerical solution
however reveals that the first few eigenspaces instead contain
eigenvectors given by

i
k
jjj

y
{
zzzπ≈y t

tk
n

( ) sin 2k

This result is indeed strikingly different, in that the cosine
functions are replaced by sine functions with twice the
frequency.
3.2. General Solution. Next, we will consider the general

case, that is, a random walk of length n in d < n dimensions.
Unfortunately, we were unable to find analytical solutions
similar to the above; however, the results of section 2.2 permit an
elegant way for a numerical approach by computing the
expectation value of the matrixM. To this aim,M was computed
for a sample of 20000 random walks of given fixed dimension d
and number of time steps n, from which an average matrix ⟨M⟩
was computed. The eigenvectors of ⟨M⟩ served as the
semianalytical solution for the general case. We note that this
does not necessarily produce the same results as averaging the
individual tICA-projections directly. We have, however, tested
that the eigenvectors of ⟨M⟩ are very similar to the averages of
the tICA-projections. An exception to this is that averaging the
tICA-projections can produce artifacts arising from to the
fluctuating order of the eigenvectors, and these artifacts are not
present in the eigenvectors of ⟨M⟩.
As an illustration, Figure 1 shows the first two resulting tICA-

projections for randomwalks with n = 1000 and d = 50, revealing
a strong dependence on the lag time τ. For short lag times τ, y1(t)
≈ cos(πt/n) and y2(t) ≈ cos(2πt/n). With increasing τ, these
low-frequency cosines are gradually replaced by higher-
frequency components, first in y2 (starting at about τ = 90)
and for further increasing τ > 150 also in y1. From then on, the
frequencies of both y1 and y2 slowly decrease, maintaining a π
phase shift.

In contrast to the special case considered above (section 3.1),
our numerical studies suggest that for large lag times the
averaged projections do not approach exact cosines for large n.
Rather, “cosine like” functions appear, as can be seen for the high
lag-times shown in Figure 1, where the circular shape that would
be expected for exact cosines is noticeably distorted, even if n is
further increased. In contrast, for short lag times, where the
higher frequency components have not yet appeared (e.g., τ < 90
in Figure 1), the projections do seem to approach exact cosines
with increasing n.
For the alternative symmetrization method, eq 3, the same

method can be applied, and the obtained projections are shown
in Figure 2. Indeed, when the two figures are compared, even
more dramatic differences are seen as a result of this very small
change. In particular, for short τ values, the cosine-like functions
seem to be replaced by sine-like functions of twice the frequency,
just like we have already seen for the special case d = n. Also, for
increasing τ a much richer and complex behavior is seen. Finally,
the onset of higher frequencies occurs for somewhat smaller τ
values (at τ ≈ 100) compared to that in Figure 1 (at τ ≈110).
This abrupt emergence of higher frequencies deserves closer
inspection.

3.3. Abrupt Changes. To gain more insight into why these
abrupt changes occur, Figure 3A shows the eigenvalues of ⟨M⟩
as a function of τ for dimension d = 30, revealing a strikingly
complex pattern. For small lag times τ all eigenvalues decrease
with τ, with associated cosine-shaped eigenvectors of period
lengths 2n, 2n/2, 2n/3, ..., as annotated in the figure. The
decrease of these curves reflects the sampling of the cosine-

Figure 3. Eigenvalues of the averagedmatrix ⟨M⟩ as a function of the lag
time τ at (A) dimension d = 30 and (B) dimension d = 50. The two
abrupt changes are indicated using black circles. The colors indicate the
order of the eigenvalues.
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shaped eigenvectors with increasing lag time τ and, hence, the
respective autocorrelations also resemble cosine functions.
Also visible are several curves that monotonically increase

with τ, each starting at zero for small τ. These curves represent
two eigenvalues each, with cosine-shaped and sine-shaped
eigenvectors of period lengths τ, 2τ, 3τ, ..., respectively, as also
annotated in the Figure. Their increase is less obvious, as one
might expect the autocorrelation of a τ-periodic function at lag
time τ to be unity and, therefore, constant. Note, however, that
the eigenvalue of ⟨M⟩ does not strictly represent this
autocorrelation; rather, it represents the average of the
autocorrelations of many instances of this eigenvector for each
single random walkeach of which is not strictly periodic. For
increasing period lengths, the eigenvectors approach cosines or
sines, such that their average autocorrelation increases and so do
the corresponding eigenvalues of ⟨M⟩.

At the intersections of these two sets of curves (black circles)
the respective eigenvalues are degenerate and their order
changes, which causes abrupt changes of the eigenvectors and,
therefore, also of the projections onto these eigenvectors, the
first two of which were discussed above.
For larger dimensions d, for example, for d = 50 as shown in

Figure 3B, one would expect that the tICA-projections resemble
cosine or sine functions increasingly closely, also at increasingly
higher frequencies. As a result, the eigenvalues corresponding to
the eigenvectors with period lengths τ, 2τ, 3τ, ... should increase
with d at any given lag time τ, whereas the decreasing eigenvalue
curves on the left side should remain unchanged. Therefore, the
respective intersections should occur at smaller lag times τ.
Comparison of the black circles in the two panels of Figure 3
shows that this is indeed the case. To illustrate this effect, Figure
4 shows the first two tICA-projections of random walks with

Figure 4. First two tICA-projections of random walks with varying dimensions d, each with n = 10000. The lag times of the abrupt changes decrease
with increasing dimension.
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dimensions ranging from 50 (top row) to 500 (bottom row) for
increasing τ.
To quantify this behavior, we generated a large number of

random walks and determined the lag times τ at which the
abrupt changes occur. Figure 5 shows the first and second of

these critical lag times as a function of dimension d and for n
ranging from 1000 to 5000 (colors). To enable direct
comparison, the lag times τ have been normalized by n. As can
be seen, for d between ca. 150 and n/2 both the first (upper
curves) and second (lower curves) approximate power laws n/τ
∝ db, as indicated by the respective fits (solid lines, the colors
correspond to the values of n). For each fit, only dimensions d
within the above range have been used.
The inset of Figure 5 shows the power law exponents b for

varying n and for the first and second abrupt change, both of
which apparently approach b = −1/2 for large n (also
represented by the black lines in the main figure). Although
we were unable to find a rigorous proof, this finding suggests that
in the limit of large n and d, with d markedly smaller than n, the
first few lag times at which abrupt changes occur scale as τ ∝ n/
√d.
3.4. Comparison of Random Walks and MD-Trajecto-

ries. We next compared the tICA-projections of random walks
with those of molecular dynamics trajectories of proteins in
solution. To that end, we used two MD-trajectories of length 1
μs each (generated as described in section 2.4), one of a
comparatively large protein (PDB 11AS, 330 amino acids)37 and
one of a smaller protein (WW-domain of PDB 2F21, 34 amino
acids).38

As can be seen in Figure 6, the tICA-projections of the larger
protein (top group) are indeed spectacularly similar to those of a
random walk (bottom group). Even the strong dependence on
the lag time is very similar, as are the abrupt changes discussed
above.
Note that this striking similarity was obtained for a particular

choice of d = 40 for the random walk; other dimensionalities
yield less similar projections. Intriguingly, this finding thus
suggests a new method of estimating an “effective” dimension-
ality of MD trajectories.
It is also worth noting that both the MD-trajectory and the

random walk projections show apparent “clusters”, for example,

for τ = 500 and τ = 8000, which also look quite similar. The fact
that such clusters are also seen for the random walk strongly
suggests that these are mostly stochastic artifacts and do not
point to minima of the underlying free energy landscape.
A closer inspection of the random walk projections offers an

additional possible explanation for some of the clusters, which
may also apply to the MD trajectory projections. Focusing, for
example, at the averaged tICA-projections in Figure 1
immediately before the first abrupt change, one can see that
the projection becomes overlaid with a cosine of higher
frequency. Particularly at the ends of the curves, and in the
presence of noise typical for single trajectories, this high
frequency component can also produce apparent “clusters”.
In contrast, for the smaller protein (Figure 7) no similarity to

the tICA-projections of random walks is observed. In fact, the
tICA-projections of the trajectory of the smaller protein show no
resemblance to a cosine-like function at all. In light of the above
analysis, this finding suggests that this trajectory is sufficiently
long to explore one or several minima of the underlying free
energy landscape, thereby deviating from a random walk.
Further, one may infer that the three clusters seen in the figure
actually point to conformational substates and, hence, can serve
as proper Markov states.
It is an intriguing question whether or not, for given trajectory

length, larger or more flexible proteins tend to more closely
resemble random walks.

4. CONCLUSIONS
Here we have analyzed projections of random walks on tICA
subspaces and subsequently compared those to tICA-projec-
tions of molecular dynamics trajectories of proteins. Our
combined analytical and numerical study revealed a staggering
complexity of the random walk tICA-projections, which showed
a much richer mathematical structure than projections of
random walks on principal components (PCA).21,22

We attribute this complexity primarily to the fact that, in
contrast to PCA, tICA components encode time information on
the trajectory and, therefore, extract and process significantly
more information. Mathematically, the complex behavior
originates from the noncontinuous switch of the order of
eigenvalues for increasing lag time τ, when passing through
points of eigenvalue degeneracy. At these points, the associated
eigenvectors change abruptly, and so do the corresponding
projections of both random walks and molecular dynamics
simulations. We also find that tICA can be very sensitive to very
small changes in the definitions of the involved matrices. In
particular, the projections of random walks are very different for
the two discussed symmetrization methods.
A particularly striking example is the first abrupt change of the

projections onto the two largest eigenvalues. Here, a closer
inspection revealed an approximate square root relationship
between the lag times at which this occurs and the
dimensionality of the random walk. A similar square root law
is already known for PCA: Approximately the first√d principal
components of random walks resemble cosines.21

Comparison of tICA-projections of random walks with those
of a large protein (PDB 11AS) revealed striking similarities. This
remarkable finding suggests that not only the ensemble
properties of the finite protein trajectory resemble those of a
random walk, as has been shown earlier via PCA,21 but also the
time correlations of the underlying protein dynamics. Here, the
appearance of cosine-like functions in the projections onto the
tICA-vectors associated with the longest correlation times

Figure 5. Lag time at which the abrupt changes occur in dependence of
the dimension for various n. Each dot represents an independently
generated random walk. Also shown are the power law fits n/τ = a·db

(colored lines), their exponents (inset), and the lines corresponding to
b = −0.5 (black lines).
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clearly points to a nonconverged trajectory. For the compara-
tively small lag times typically used, the tICA-projections of
random walks almost exactly resemble cosine functions, such
that the cosine-content22 of the tICA-projections should serve as
a good quantifier of this.
In contrast, no resemblance to a randomwalk was seen for the

second, smaller protein studied here, indicating that the
projection reflects actual features of the underlying conforma-
tional dynamics of the protein.
The example in Figure 6 also illustrates the risk of

overinterpreting apparent “clusters” seen in the tICA-projec-
tions as actual conformational substates,4,16 which are defined as

local minima of the protein free energy landscape that are
sufficiently deep for the system to stay there for a certain amount
of time.16 Clearly, it is tempting to also see “clusters” in the
random walk projections, which, however, by the definition of
the randomwalk as a diffusion on a flat energy landscape, cannot
represent conformational substates. This finding raises concerns
for using automated clustering algorithms to identify, for
example, folding intermediates or to characterize conforma-
tional motions from tICA-projections.45

Because the additional parameter of a varying lag time
provides a much richer structure and many instead of only one
projection (as is the case for PCA), we speculate that the tICA

Figure 6. First two tICA-projections of anMD-trajectory of PDB-entry 11AS (upper group) and those of a 40-dimensional randomwalk (lower group)
for varying lag time τ. In this plot those of the MD-trajectory are smoothed using a moving average to improve readability.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00273
J. Chem. Theory Comput. 2021, 17, 5766−5776

5774

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00273?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00273?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00273?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00273?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00273?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


resemblance to a random walk offers a much more sensitive tool
to detect lack of convergence in MD trajectories of large
biomolecules. Further, by adjusting the dimension of the
random walk such as to maximize the similarity to a given MD
trajectory, one can estimate the effective dimensionality of the
underlying dynamics. The latter idea, as well as precisely how
this “effective dimensionality” can be defined, clearly deserves
further exploration.
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