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Free energy calculations based on atomistic Hamiltonians provide microscopic insight into the
thermodynamic driving forces of biophysical or condensed matter systems. Many approaches use
intermediate Hamiltonians interpolating between the two states for which the free energy difference
is calculated. The Bennett Acceptance Ratio (BAR) and Variationally Derived Intermediates (VI)
methods are optimal estimator and intermediate states in that the mean-squared error of free energy
calculations based on independent sampling is minimized. However, BAR and VI have been derived
based on several approximations that do not hold for very few sample points. Analyzing one-
dimensional test systems we show that in such cases BAR and VI are suboptimal and that established
uncertainty estimates are inaccurate. Whereas for VI to become optimal less than seven samples
per state suffice in all cases, for BAR the required number increases unboundedly with decreasing
configuration space densities overlap of the end states. We show that for BAR the required number
of samples is related to the overlap through an inverse power law. Because this relation seems to
hold universally and almost independent of other system properties, these findings can guide the
proper choice of estimator for free energy calculations.

INTRODUCTION

Free energy differences provide detailed insights into
the molecular driving forces of biophysical processes and
their accurate calculation is crucial for their successful
application, e.g., in pharmaceutical ligand design or ma-
terial science [1–7]. To calculate the free energy difference
between, e.g., two potential drug molecules bound to a
receptor, alchemical equilibrium techniques [8] based on
simulations with atomistic Hamiltonians are amongst the
most widely used methods. Aside from the two states of
interest, these techniques conduct sampling from inter-
mediate states whose Hamiltonians are constructed from
those of the end states. The step-wise summation of the
individual differences then yields the total free energy
difference.

Two choices have to be made that critically affect the
accuracy of free energy calculations: Firstly, the choice
of the estimator that is used to evaluate the free en-
ergy differences between the individual states. Whereas
a number of estimators exist that have practical advan-
tages in different situations [8–10], it has been shown
that between two states the Bennett Acceptance Ratio
(BAR) method [11] minimizes not only the variance, but
also the mean-squared error (MSE) [12]. Remarkably, as
will be revisited in the theory section, the Zwanzig for-
mula [9] yields identical MSEs if applied together with
an optimally chosen virtual intermediate state in which
no sampling is conducted [10, 12]. For BAR, the variance
and the bias have been extensively analyzed [10, 13–17].
As the MSE can be decomposed into variance plus the
squared bias, and therefore accounts for both the vari-
ance and the bias, we will focus our analysis in this work
on the MSE. Further, from an application perspective,
the MSE is the relevant quantity.

The second choice concerns the functional form of the
intermediate states, i.e., how these are constructed from
the two end state Hamiltonians. Apart from the con-
ventionally used linear interpolation intermediates, var-
ious functional forms have been suggested [18–21], with
a particular focus on appearing or vanishing particles in
solution [22–26]. In general, when using the Zwanzig
formula or BAR as an estimator, and assuming inde-
pendent samples, the Variationally-derived Intermediates
(VI) [12, 27, 28] have been shown to yield the optimal
MSE amongst all possible functional forms of intermedi-
ate states.

However, both BAR and VI have been derived using
approximations that strictly hold only for large sample
numbers. This question becomes particularly urgent for
free energy calculations of large systems or when us-
ing quantum mechanics based methods [29–32], which
are computationally demanding and, therefore, provide
limited sampling. Further, sample points derived from
atomistic simulations are time-correlated, such that the
effective number of independent sample points is often
orders of magnitude smaller than the number of config-
urations obtained from a simulation. We therefore will
analyze how the accuracy of BAR and VI depends on
sample size, and show how the obtained scalings provide
guidance on their proper use.

THEORY

Several different derivations of BAR have been pub-
lished [11, 33, 34], resting on different assumptions. Here
we recapitulate the one with the least restrictive assump-
tions, which also highlights the unexpected relation be-
tween estimators and intermediate states [12]. The gen-
eralization of this relation to N intermediate states has
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been used to derive VI. Both approaches rest on the
Zwanzig formula [9]. Accordingly, the free energy differ-
ence between states A and B with Hamiltonians HA(x)
and HB(x), respectively, is given by

∆GA,B = − ln〈e−[HB(x)−HA(x)]〉A , (1)

where x ∈ IR3M denotes the position of all M particles
of the simulation system. Only sample points from state
A are used, where 〈〉A denotes the ensemble average. For
ease of notation, all energies are expressed in units of
kBT .

In the following, the free energy estimate governed by
Hamiltonian HA(x) that is obtained when the ensemble
average in Eq. (1) is calculated from a finite sample of size

n will be denoted by ∆G
(n)
A→B , whereas ∆GA,B denotes

the exact free energy difference. For statistically inde-
pendent samples, the MSE of the free energy calculated
via Eq. (1) reads [12]

MSE
(

∆G
(n)
A→B

)
=E

[(
∆GA,B −∆G

(n)
A→B

)2]
(2)

=
1

n

(∫
(pB(x))

2

pA(x)
dx − 1

)
, (3)

where pA(x) = e−HA(x)/ZA and pB(x) = e−HB(x)/ZB
denote the configuration space densities and ZA and ZB
the partition functions of the respective end states.

Importantly, the derivation of the MSE of the Zwanzig
formula, Eq. (3), and therefore also the optimization
thereof leading to BAR and VI, is based on approxi-
mations. As a prior step, we consider the Hamiltonian
HB(x)−C, i.e., the Hamiltonian of end state B shifted by
a constant C. Using this Hamiltonian with the Zwanzig
formula, Eq. (1), the free energy difference between A
and B is calculated as

∆GA,B = − ln〈e−[HB(x)−C−HA(x)]〉A + C . (4)

We now denote the sample based average from Eq. (4)
as

y(n)(C) =
1

n

n∑
i=1

e−[HB(xi)−C−HA(xi)] (5)

and the exact ensemble average as

y(C) =

∫
pA(x)dx e−[HB(x)−C−HA(x)] . (6)

For large n, using C ≈ ∆GA,B implies y(n)(C) ≈
y(C) ≈ 1. After expanding the MSE, Eq. (2) (for the
full derivation see Ref. [12]), the expectation value of the
estimate based on finite sampling

E
[
∆G

(n)
A→B

]
=

−
∫
pA(x1)dx1...

∫
pA(xn)dxn ln

(
y(n)(C)

)
+ C

(7)

and its square

E
[(

∆G
(n)
A→B

)2]
=

−
∫
pA(x1)dx1...

∫
pA(xn)dxn

[
ln
(
y(n)(C)

)
+ C

]2
(8)

are approximated by using the first order series expan-
sion of the logarithm ln

[
y(n)(C)

]
≈ y(n)(C) − 1 around

y(n)(C) = 1. Along similar lines, the exact difference and
its square are approximated as ∆GA,B = − ln [y(C)] +

C ≈ −y(C)+1+C and (∆GA,B)
2

= (− ln [y(C)] + C)
2 ≈

(−y(C) + 1 + C)
2

around y(C) = 1.

Critically, for small n the averages y(n)(C) and y(C)
generally differ, and therefore C cannot be chosen such
that both are approximately one. If, as in practice, C
is evaluated based on the acquired samples such that
y(n)(C) = 1, then y(C) differs from one and, conse-
quently, the first order series expansion of y(C) becomes
inaccurate. If y(n)(C) and y(C) differ by, e.g., less than
10 %, then the relative error of this approximation of the
logarithm remains below 5 %. However, for larger dif-
ferences the neglected higher order terms will contribute
markedly. A similar effect is caused by small configu-
ration space density overlaps of the end states: Due to
wider distributions of the exponentially weighted differ-
ences HB(x)−HA(x), the variance of the sample based
averages y(n)(C) will increase, and therefore also the av-
erage absolute deviations from y(C).

In the next step, Fig. 1(a) shows how an interme-
diate state I is used to derive the BAR formula via
∆G

(n)
A
B = ∆G

(n)
A→I − ∆G

(n)
B→I . We refer to I as a vir-

tual intermediate because it only serves as an end state
for the Zwanzig formula, without being actually used for
sampling. The derivation based on the above approxi-
mations [12] yielded an additive MSE in this case, i.e.,
the MSE of the total estimate is

MSE
(

∆G
(n)
A
B

)
= MSE

(
∆G

(n)
A→I

)
+ MSE

(
∆G

(n)
B→I

)
.

(9)

For easier notation, we assume that the same number
of samples n is available for the two end states. Minimiz-
ing Eq. (9) through a variational approach leads to the
Hamiltonian of the optimal virtual intermediate [12]

HI(x) = ln
(
eHA(x) + eHB(x)−C

)
, (10)

where the MSE is minimal if C = ∆GA,B and approaches
that minimum as C approaches ∆GA,B . Figure 1(b)
shows this virtual intermediate state as a black dashed
line for a one-dimensional example where one of the two
end Hamiltonians is harmonic (red), and the other quar-
tic (blue).
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FIG. 1. (a) Two schemes of free energy estimators. Left: Using the Zwanzig formula to calculate the free energy difference from
the two end states to a virtual intermediate state in which no sampling is conducted. Right: Using BAR, where a weighting
factor is applied to the difference in Hamiltonians. The two schemes are identical if the expressions shown beneath the schemes
are used for the Hamiltonian of the virtual intermediate and the weighting function of BAR. (b) Configuration space densities
of the virtual intermediate states corresponding to the linear estimator (green dashed line) and BAR (black dashed line). The
densities of the harmonic end state, HA(x) = ax2, and the quartic end state, HB(x) = b(x− x0)4, are shown in red and blue,
respectively. (c) Variationally-derived Intermediates (VI). States in which sampling is conducted are indicated through solid
lines, whereas virtual intermediates are indicated through dashed lines.

Let us compare the result using ∆G
(n)
A
B = ∆G

(n)
A→I −

∆G
(n)
B→I with intermediate Eq. (10) to the original ap-

proach by Bennett [11],

∆G
(n)
A
B = ln

〈w(HA(x), HB(x))e−HA(x)〉B
〈w(HA(x), HB(x))e−HB(x)〉A

. (11)

which uses a suitably chosen weight function
w(HA(x), HB(x)). Bennett optimized the weight-
ing function with respect to the variance, which yields
the widely used BAR result

∆G
(n)
A,B − C = ln

〈f(HA(x)−HB(x)− C)〉B
〈f(HB(x)−HA(x) + C)〉A

, (12)

where f(x) = 1/(1 + ex) is the Fermi function and C ≈
∆GA,B has to be determined iteratively.

From Eq. (11) and ∆G
(n)
A
B = ∆G

(n)
A→I−∆G

(n)
B→I with

Eq. (1) follows that the two approaches are equivalent if
the weighting function relates to the Hamiltonian of the
virtual intermediate state through

w(HA(x), HB(x)) = e−HI(x)+HA(x)+HB(x) . (13)

Therefore, any Hamiltonian of a virtual intermediate
state corresponds to a weighting function.

The variance of BAR [11] is given by

Var
(

∆G
(n)
A,B

)
=

2

n

[
Ω−1 − 1

]
, (14)

Ω =

∫
dx

2pA(x)pB(x)

pA(x) + pB(x)
(15)

where Ω can be interpreted as an overlap measure.
Within the limits of the approximations discussed above,

Bennett’s variance, Eq. (14), equals the MSE, Eq. (3), of
using Zwanzig in two steps, as is shown in Appendix A.

This link between BAR and VI, Eq. (13), allows cre-
ating different estimators and transforming them be-
tween the formalism of using an intermediate state or
a weighting function. Here, we will apply this result
and compare BAR to the estimator that uses HI(x) =
1
2 (HA(x)+HB(x)) as the virtual intermediate state. Be-
cause HI(x) is a linear interpolation, we will refer to the
resulting estimator as ’linear estimator’, also known as
the Simple Overlap Sampling method [35, 36]. The re-
sulting configuration space density is shown by the green
dashed line in Fig. 1(b). As shown in Appendix B, our
MSE for the Zwanzig formula, Eq. (3), yields the MSE
for the linear estimator,

MSE
(

∆G
(n)
A,B

)
=

2

n

[(∫
pA(x)

1
2 pB(x)

1
2 dx

)−2
− 1

]
.

(16)

The term in round brackets of Eq. (16) can be interpreted
as an overlap measure, different from above, which equals
one for two identical configuration space densities, and
zero for disjunct supports.

Next, any number of optimal intermediate states can
be derived by extending Eq. (9) with the MSEs of ad-
ditional steps. Here, we focus our analysis on only one
intermediate state S for sampling, i.e., calculations of the
form A→ I ← S → I ← B. The optimization with vari-
ational calculus with respect to all intermediate Hamil-
tonians yields the VI. These consist of, firstly, Eq. 10
(the BAR equivalent) as the optimal Hamiltonian of the
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virtual intermediates and secondly, the optimal sampling
Hamiltonian HS(x), which is determined through solu-
tion of

HS(x) = −1

2
ln
[(

eHA(x)ZA
ZS

+ eHS(x)

)−2
+

(
eHB(x)ZB

ZS
+ eHS(x)

)−2 ]
.

(17)

The initially unknown ratios of the partition sums are de-
termined iteratively, similar to the constant C for BAR.
The converged VI for the harmonic and quartic end states
are shown in Fig. 1(c).

In summary, for small n, BAR and VI result from the
accurate optimization of an inaccurate MSE. Naturally,
this does not ensure that better estimators and interme-
diate sampling states exist, which is therefore the subject
of our test simulations.

METHODS

In the first step, we assess the MSEs of different es-
timators. To this aim, we consider the one-dimensional
system with end states consisting of a harmonic and a
quartic Hamiltonian, as shown in Fig. 1(b). Based on n
sample points drawn from the configuration space density

of A and B, the free energy estimate ∆G
(n)
A
B is obtained

and compared to the exact difference ∆GA,B . Rejection
sampling is used to obtain uncorrelated sample points.
The MSE, Eq. (2), is then calculated by averaging over
one million of such realizations. We use n = 1, 20 and
1000 sample points per end state. For each n, we con-
sider 82 different setups for which the potential of end
state B is moved horizontally away from A by varying
x0, thereby considering a range of overlap Ω, which is
obtained through numerical integration of Eq. (15).

With this procedure, we compare three variants. To
separate the effects of an inaccurate estimate of C, firstly,
BAR is used where C has been set to the (in practice
unknown) exact free energy difference. Secondly, using
BAR, where C is iteratively determined based on the
sample set as done in practice. Thirdly, the linear esti-
mator.

In the second step, aside from sampling in the end
states, sampling is also conducted in one intermediate
state S and a similar procedure as above is used to eval-
uate the MSEs of different Hamiltonians HS(x). Sepa-
rate sample sets in S are used to evaluate the free en-
ergy differences to either end state, as using the same
sample set would introduce correlations between the two
step-wise free energy estimates that would require a dif-
ferent analytic approach as the one described above [27].
Again, three variants are compared: Firstly, the VI, i.e.,
Eqs. (10) and (17). For simplicity, only exact estimates

for C and the ratios of the partition sums are considered.
Secondly, as a comparison, two variants with a linearly
interpolated sampling Hamiltonian: One using the linear
estimator, and another one using BAR to evaluate the
step-wise free energy difference. Again, the procedure
was conducted for n = 1, 20 and 1000 sample points per
sample set.

RESULTS AND DISCUSSION

The MSEs of the three estimator variants are shown
in Fig. 2(a)-(c) for different configuration space density
overlaps Ω between the harmonic and the quartic end
state. The panels show this relation for different sample
sizes n. As can be seen, for n = 1 both variants of BAR
(blue and green) are suboptimal for all Ω, as they yield a
larger MSE than the linear estimator (yellow). For n =
20, it depends on Ω whether BAR is suboptimal. Here,
a turning point exists, i.e., the linear estimator is only
better for approximately Ω < 10−1, whereas both BAR
variants yield better MSEs for larger Ω. For n = 1000,
this turning point shifts towards smaller Ω. Here, the
BAR variants perform better for around Ω > 10−3. Note
that as the end states are different in form, the largest
achievable overlap is Ω = 0.935 and therefore no MSE of
zero can be seen in Fig. 2(a)-(c), which would be expected
for Ω = 1.

Unexpectedly, whereas for most n and Ω both BAR
variants have very similar MSEs, the one in blue where
C = ∆GA,B (i.e., the exact free energy difference) was
used yields slightly larger MSEs than the variant that
uses a sample based estimate of C (green). This finding
is in contrast to the widespread belief that an estimation
for C that deviates from ∆GA,B is a major contribution
to the inaccuracy of BAR. The reason for this behav-
ior lies in the first order series expansions of ln y(C) and
ln y(n)(C), as shown in the context of Eqs. (7) and (8) in
the theory section. For small n, y(n)(C) and y(C) differ,
and C can therefore not be chosen such that the require-
ment is met that both are close to one. As a consequence,
even if C = ∆GA,B such that y(C) = 1, then the first
order series expansion of ln y(n)(C) becomes inaccurate,
and the same holds true for the subsequent derivation of
BAR.

The dashed lines in Fig. 2(a)-(c) show the predicted
MSEs for BAR, i.e., Eq. (14), whereas the dotted lines
show the one of the linear estimator, Eq. (16). As can
be seen from Fig. 2(a), for n = 1 the predicted MSEs are
much too small. Furthermore, BAR is predicted to have
a better MSE than the linear estimator which is not the
case for the results of the test simulations. For n = 20,
the MSEs start to agree for large Ω, but still deviate
substantially for small Ω. For BAR with n = 1000, the
MSEs agree well for most Ω. For the linear estimator,
the prediction is still mostly only accurate for large Ω.
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FIG. 2. Comparison of BAR and the linear estimator. (a)-(c) MSEs obtained from test simulations based on the setup shown in
Fig. 1(b) for sample sizes of n = 1, 20 and 1000. The MSEs are shown as a function of the configuration space density overlap Ω,
where different Ω were obtained by varying x0 of the quartic end state. The results of two variants of BAR are shown: Firstly,
using a constant C that equals the exact free energy difference (blue), and secondly, for C that was iteratively determined for
each set of samples (green). The MSE of the linear estimator is shown in yellow. The dashed and the dotted lines show the
analytical MSEs calculated based on approximations for BAR and the linear estimator, respectively, i.e. Eqs. (14) and (16).
(d) Setups used for the test simulations yielding the results shown by the respective Roman numbers (e). Setup I is identical
to the one in Fig. 1(b). (e) The minimum sample size n required such that BAR with an exact C yields a better (i.e., smaller
MSE) than the linear estimator is shown as a function of Ω. The solid lines show the function n = bΩ−a fitted to the data
points in the respective colors. The fit coefficients a and b are provided in the legend.

Interestingly, unlike at n = 1, Eq. (16) predicts an MSE
that is larger than the one from the test simulations for
n = 1000. These results show that BAR is only optimal
in cases where the predicted MSE is close to the actual
one. In cases where the predicted MSE is inaccurate,
BAR, as the optimization thereof, becomes suboptimal.

As the turning point Ω above which BAR becomes op-
timal varies with n, the question arises for the relation
between the required n for different Ω and how this re-
lation compares for different systems. Therefore, in the
next step we test how many sample points are required
for BAR to achieve a smaller MSE than the linear es-
timator, depending on the configuration space density.
To this aim, the first variant is used (C exact). Start-
ing with n = 1, the MSEs of both BAR and the linear

estimator are calculated and n is gradually increased un-
til the turning point is found. In addition to the setup
consisting of end states with a harmonic and a quartic
Hamiltonian, three other diverse systems are considered,
which are shown in Fig. 2(d). Again, for each system
different horizontal shifts are used to vary Ω. The defi-
nitions and parameters of these systems are described in
Appendix C.

The required number of sample points n is shown in
dependence of Ω in Fig. 2(e). The four colors indicate the
different test systems with corresponding roman numbers
from Fig. 2(d). The required n closely follow a linear
relation in the log-log plot, indicating a relation of the
form n = bΩ−a. Fits of this form are shown as solid
lines and the fit coefficients are provided in the legend of
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FIG. 3. Comparison of the MSEs between using a linear intermediate state and VI. As for Fig. 2(a)-(c), test simulations with a
harmonic and a quartic end state were used, and (a)-(c) show the results for samples size of n = 1, 20 and 1000, respectively, in
each state as a function of the configuration space density overlap Ω between the end states. The results of two variants using
a linear intermediate state are shown: Firstly, using the linear estimator (yellow) and secondly, using BAR (red) to evaluate
the step-wise free energy differences. The MSE of VI, which includes using virtual intermediate states that correspond to BAR
as shown in Fig. 1(c) is shown in blue. The respective analytical MSEs are shown as black dashed, dotted and dashed-dotted
lines.

Fig. 2(e). Interestingly, the relation between n and Ω is
very similar for all four test systems, suggesting that Ω
and n are almost the sole factors that determine which
estimator is superior.

Figure 3(a)-(c) compares MSEs for different interme-
diate sampling states S as a function of the overlap Ω
between A and B for n = 1, 20 and 1000 per sample set.
For n = 1, the linear intermediate combined with the
linear estimator (yellow) yields the best MSE, followed
by the linear intermediate with BAR (red) and VI (blue)
that includes BAR as an estimator. For n = 20 and
n = 1000, VI yields the best MSE for all Ω. For the
linear intermediate sampling state, for n = 20 a turning
point exists (Ω ≈ 5 ·10−2), above which BAR is superior,
and below which the linear estimator is superior. For
n = 1000, BAR yields better MSEs at all Ω.

Again, for n = 1 the predicted MSEs are much smaller
than the actual ones. However, already for n = 20, the
actual MSE for VI is only slightly larger than the pre-
diction, and matches perfectly for n = 1000. For the
linear intermediate, for n = 20 both the predictions for
BAR and the linear estimator hold only for larger over-
laps. For n = 1000, the one for BAR matches the actual
MSEs very well, whereas for the linear estimator the pre-
diction reproduces the trend but slightly overestimates
the MSEs for small overlaps. We also tested how many
sample points n are required per state for VI to be op-
timal. Whereas for systems with large Ω, two or three
sample points per state suffice, in no case does the re-
quired number of sample points exceed seven per state
(data therefore not shown).

These results show that, again, the predicted MSEs are
inaccurate for small n. As a consequence, the VI, which
have been derived as an optimization thereof, are sub-

optimal. However, using an intermediate sampling state,
the MSEs become accurate and VI becomes optimal for
much fewer n than for BAR. We attribute this unex-
pected result mainly to the fact that for VI the sampling
intermediate still maintains a large overlap with both end
states, even if their configuration space densities are en-
tirely disjunct.

SUMMARY AND CONCLUSION

We have shown that for small sample sizes n the ana-
lytically calculated MSEs of free energy estimates based
on the Zwanzig formula become increasingly inaccurate
due to approximations in its derivation. As a conse-
quence, BAR and VI, which have been derived as an op-
timization thereof, become suboptimal for small n, which
was demonstrated through the existence of better alter-
natives. For BAR, even if the constant C is set to the
exact free energy difference this suboptimality not only
remains, but is even slightly worse than when C is esti-
mated based on the samples.

Whether BAR and VI are optimal depends, aside from
n, on the configuration space density overlap Ω, because
for small Ω the fluctuations in the exponential averages
increase. However, whereas BAR is suboptimal even for
n > 1000 if Ω < 10−3, VI is already better than all other
tested variants for n = 7 independent of Ω, owing to the
fact that the overlap between adjacent states is largely
increased when using an intermediate state. For BAR,
Ω was almost the sole factor that determined how many
sample points were required to be better than the linear
estimator. The relation follows an inverse power law of
the form n = aΩ−b, with very similar coefficients a and
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b for all four test systems considered.

It should be emphasized again that in atomistic simu-
lations subsequent sample points are correlated, whereas
the theory in this work relies on the common assump-
tion of independent sample points. Therefore, the n pro-
vided here such that BAR is optimal will typically refer to
the effective number of statistically independent sample
points, which is typically much smaller that the actual
sample size. The low number effects on then MSE as-
sessed here, therefore, can be relevant in macromolecular
applications also for quite large sample sizes.

For such applications, instead of monitoring the vari-
ance or MSE directly (as implemented in many simula-
tion software packages), we recommend to firstly consider
Ω. Secondly, packages such as alchemical-analysis.py [37]
analyze the time correlations between sample points and
give an estimate for the number of independent ones.
Then, thirdly, the relation between the required n and Ω
from this work will indicate whether BAR is optimal or
whether another estimator such as the linear one should
be used instead. Furthermore, in cases where BAR be-
comes close to being suboptimal, also the uncertainty
estimates become inaccurate and other methods such as
bootstrapping should be considered. Whereas BAR will
remain the optimal estimator in many cases, these find-
ings can help to assure that the optimal estimators are
employed in all challenging applications.

Appendix A: Proof of MSE Equivalence to BAR
Variance

The Zwanzig formula [9], Eq. (1), is used in two steps,
as shown in Fig. 1(a). The MSE of a single step is given
through Eq. (3). Therefore, the total MSE is calculated
through

MSE
(

∆G
(n)
A
B

)
(18)

= MSE
(

∆G
(n)
A→I

)
+ MSE

(
∆G

(n)
B→I

)
(19)

=
1

n

(∫
(pI(x))

2

(
1

pA(x)
+

1

pB(x)

)
dx − 2

)
. (20)

Using the configuration space density of the optimal vir-
tual intermediate, Eq. (10),

pI(x) =

[
pA(x)−1 + pB(x)−1

]−1∫
dx [pA(x)−1 + pB(x)−1]

−1 (21)

leads to

MSE
(

∆G
(n)
A
B

)
=

1

n

∫
dx
[
pA(x)−1 + pB(x)−1

]−1
(
∫

dx [pA(x)−1 + pB(x)−1]
−1

)2
− 2

n

=
1

n

(∫
dx

1

pA(x)−1 + pB(x)−1

)−1
− 2

n

=
1

n

(∫
dx

pA(x)pB(x)

pA(x) + pB(x)

)−1
− 2

n
,

(22)

which equals the variance from Bennett [11], Eq. (14).

Appendix B: MSE Derivation of the Linear
Estimator

The linear estimator uses the linear interpolation
HI(x) = 1

2 (HA(x) +HB(x)) as the virtual Hamiltonian.
The corresponding MSE is calculated by inserting the
configuration space density,

pI(x) =
e−

1
2 [HA(x)+HB(x)]

ZI
(23)

into the expression of the MSE for using Zwanzig in two
steps, Eq. (20), which yields

MSElin

(
∆G

(n)
A
B

)
=

1

n

(∫ [
e−[HA(x)+HB(x)](∫
e−

1
2 [HA(x)+HB(x)]dx

)2

(
ZA

e−HA(x)
+

ZB
e−HB(x)

) ]
dx − 2

) (24)

=
1

n


∫ (

ZAe
−HB(x) + ZBe

−HA(x)
)

dx(∫
e−

1
2 [HA(x)+HB(x)]dx

)2 − 2

 (25)

=
1

n

 2ZAZB(∫
e−

1
2 [HA(x)+HB(x)]dx

)2 − 2

 (26)

=
2

n

[(∫
pA(x)

1
2 pB(x)

1
2 dx

)−2
− 1

]
. (27)

Appendix C: Parameters of Test Systems

The test systems shown in Fig. 2(d) are based on
the Hamiltonians provided below. These were used
to determine the results shown in Fig. 2(e), i.e., the
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minimum required number of sample points n as a
function of Ω such that BAR yields a smaller MSE than
the linear estimator.

System I: HA(x) = 0.75x2 and HB(x) = (x− x0)4 using
46 values for x0 with 0 ≤ x0 ≤ 4.5.

System II: HA(x) = 0.1 sin(20x) + x2 and HB(x) =
0.3x4 − 0.8 (x − x0)2 using 47 values for x0 with 0 ≤
x0 ≤ 23.

System III: HA(x) = ex − x and HB(x) = 0.15 (x− x0)2

using 24 values for x0 with 0 ≤ x0 ≤ 9.

System IV: HA(x) = 0.3x4 − 0.8 (x− x0)2 and HB(x) =

4ε

[(
σ

x−x0

)12
−
(

σ
x−x0

)6]
for 0 < x − x0 ≤ 15 and

HB(x) = ∞ otherwise, using ε = 2.0446 and σ = 3.405
and 22 values for x0 with 0 ≤ x0 ≤ 4.03.
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