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Conclusions & Outlook:

● Implementing a posteriori sampling quality check to see, if the parameters are chosen correctly
● Validating the DMC method in the alanine dipeptide system
● Running a DMC simulation of small proteins using MC-based simulations
● Benchmarking the calculation effort of DMC versus MD 

References:

[1] Arthur F. Voter, “Introduction to kinetic monte carlo method” (Springer, 
December 4, 2008)

[2] M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. 
Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia and M. Parrinello, PLUMED: 
a portable plugin for free energy calculations with molecular dynamics, 
Comp. Phys. Comm. 180, 1961 (2009)

The Kinetic Monte Carlo method (KMC)[1]

Low energy High energy

Strategy:

I. Enumerate all possible 
transitions

II. Compute rates for each transition

III. Accept the fastest transition

IV. Repeat steps I-III to compute 
expectation values

I. List of transitions depends on original conformation:

III. For each transition i → j, a decay time        is calculated:

II. Using (H)TST to estimate rates:

Fastest transition            occurs first and will be chosen

☹ Discretized phase space needed

☹ All transitions must be known

☺ Easy to parallelize

The Diffusive Monte Carlo Method (DMC)

Ideas:

● Replace full list by a dynamically generated representative subset of N final states

● Emphasize final states with high relative probabilities (thermodynamic sampling)

● New rates must correct sampling bias

● Sampling bias can be estimated only in a finite neighborhood 
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Alanine dipeptide (N-acetyl-alanine-N'-methylamide)

Thermodynamic:

The probability of staying in one of the 
minima gives the same results, using 
either the DMC method, or numerical 
integration.

Kinetic:

Plotting the Mean First Passage Time versus the barrier 
height gives the expected exponential relation.
Also the calculation of the diffusion constant D give the right 
value, for a constant potential as well as for a linear one.

The simulations were done in the 
AMBER99SB forcefield, using the 
GROMACS work package with its implicit 
solvent implementation. To restrict a single 
simulation to a certain subspace, we used 
PLUMED[2] to add a rmsd-based potential.

The Free Energy landscape of the 
alanine dipeptide shows four 
minima. Each two in the beta-sheet 
region and the helical sites.

N finite area searches

Final states occur multiple times with probability:

N finite area searches

IV. Compute expectation values:

☺ Continuous phase space

☹ A barrier-free subspace must be sampled correct

☺ Easy to parallelize

☺ Use of MC-sampling → long timescale transitions possible

Finite area search: using a rmsd potential to
restrict sampling

Convergence condition: 
● Sampled      must approximate exact
● Sampled area must be barrier free
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→ 

New transition rates: Convergence conditions: 
● Complete sampling of the neighborhood
● Neighborhood must be barrier free

Simplified Model Problem

Calculation of the diffusive constant 
for a constant and a linear potential:

A two dimensional model system 
including two separated minima 
bordered by repulsive boundary 
conditions.

As we can't add a hard 
border potential to a 
MD simulation, this 
function was added to 
restrict the system to a 
finite area.

Trivial systems:

● 2D potential with discrete sites

● High barriers between this sites

● Short range interaction

● For each conformation of the system: Finite number of possible transitions

Complex Systems:

For high dimensional systems (e.g. proteins) complete transition 
lists cannot be assembled. Also the unknown number of 
dimensions makes it impossible to discretize the phase space. 
The resulting huge amount of states complicates the search for 
interesting low energy states.

These rates lead to a prefactor 
in the detailed balance criterion 
that should be either monitored 
in a running simulation to be 
equal to one, or set to one by 
renormalizing the total escape 
rate.

Multiplying this D with 
the time, a particle 
needs to go from one 
minimum to the other 
one and back, leads to 
the same results as 
using a shooting 
algorithm.
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