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Abstract
Knowledge of the structure and dynamics of biomolecules is
key to understanding the mechanisms underlying their bio-
logical functions. Single-particle cryo-electron microscopy
(cryo-EM) is a powerful structural biology technique to
characterize complex biomolecular systems. Here, we
review recent advances of how Molecular Dynamics (MD)
simulations are being used to increase and enhance the
information extracted from cryo-EM experiments. We will
particularly focus on the physics underlying these experi-
ments, how MD facilitates structure refinement, in particular
for heterogeneous and non-isotropic resolution, and how
thermodynamic and kinetic information can be extracted
from cryo-EM data.
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Introduction
In recent years, single-particle cryo-electron microscopy
(cryo-EM) has become a major structural biology tool to
study biomolecules [1,2]. Essentially, using cryo-EM pro-
tein structures can be resolved at atomic resolution [3,4],

observe solvent-mediated interactions contributing to drug
binding [5], and uncover the dynamics of biomolecules by
resolving many distinct conformational states [6].

Preparation of samples for cryo-EM involves rapid
freezing to embed them in vitreous ice [7]. The frozen
www.sciencedirect.com
samples are then imaged using an electron microscope
and the resulting two-dimensional projections are
combined to reconstruct a three-dimensional cryo-EM
density. Finally, computational methods are used to
refine atomic models against this density [8].

Molecular Dynamics (MD) simulations provide in-
sights into the dynamics of biomolecules at the

atomistic level by solving Newton’s equations of
motion for every atom in the biomolecular system.
Their interactions are described by a potential func-
tion (force field) which is defined via a set of param-
eters derived from the fundamental laws of quantum
mechanics and/or experimental data [9]. Recent sub-
stantial advances in hardware, software, and methods
[10,11] have facilitated routine application of atom-
istic MD methods to study biomolecular complexes at
timescales exceeding microseconds [9] and
comprising millions of atoms [12]. Machine learning

approaches to generate structural ensembles are very
promising [13] but due to the limited space not
discussed in this review.

The advances in both MD and cryo-EM have opened up
new routes to previously inaccessible information (i) to
understand the physical processes underlying cryo-EM
experiments, (ii) to accurately extract structural infor-
mation from cryo-EM densities, and (iii) to infer the
thermodynamics and kinetics of biomolecules and bio-
molecular complexes from cryo-EM data.
Physics underlying cryo-EM experiments
The high vacuum required in cryo-EM prohibits the
direct investigation of liquid samples at physiological
temperatures. Instead, the sample is shock-frozen to
cryogenic temperatures of about 90 K, embedding the
sample biomolecules in ice. To preserve the bio-
molecules of interest in a hydrated state, the sample
solution is first applied to a cryo-EM grid in a thin film
(Figure 1a), which is then rapidly cooled by plunging it
into a cryo coolant, e.g., liquid ethane (Figure 1b) [14].
The rapid cooling is crucial because it embeds the bio-
molecules in vitreous (amorphous) ice resulting in a

state presumably similar to the hydrated state at phys-
iological temperatures (Figure 1c). In contrast, slow
cooling would result in crystalline ice which would
damage the biomolecules.
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Figure 1

Effects of cryo-EM sample preparation on the structural ensemble. (a) A solution of biomolecules is applied to carbon grid. (b) The grid is plunged into
liquid ethane, rapidly cooling the sample. (c) Biomolecules are embedded in a thin amorphous ice layer that can be imaged by cryo-EM. (d) Schematic of
a free-energy landscape G(x) along a conformational mode x, with probability densities before (red) and after slow cooling (blue).
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At lower temperatures, biomolecules can generally
access fewer conformations and the transition rates be-
tween states are exponentially decreased [15]. Tem-

perature effects on protein dynamics have been studied
with MD simulations for more than 30 years [16], often
comparing to the results of X-ray crystallography ex-
periments performed at different temperatures [15]. In
crystals, the highly concentrated biomolecules act as
cryo-protectants [17] and, therefore, rapid cooling is not
required to achieve vitreous ice.

If the temperature decrease during plunge-freezing is
markedly faster than the rates of conformational changes
of the studied biomolecule, the biomolecules are ex-

pected to be trapped within the conformational states
that were accessible before cooling (Figure 1d, red). In
contrast, if the temperature decrease is slower than the
conformational changes, one would expect the bio-
molecules to equilibrate into lower free-energy minima,
thereby perturbing the room-temperature structural
ensemble (Figure 1d, blue). Evidence that a larger part
of the physiological structural ensemble is preserved
during the cooling process comes from cryo-EM exper-
iments of the ribosome where the samples were kept at
different temperatures before cooling [18]. The largest
conformational change of the ribosome is a rotation

between its two subunits and was shown by combining
MD simulations with cryo-EM data to occur on micro-
second time scales [19]. The width of the rotation angle
distributions in the cryo-EM reconstructions was shown
to be larger for higher initial temperatures, suggesting
that the rotation did not reach an equilibrium distribu-
tion during cooling [18]. Precisely how much of the
room temperature structural ensemble of biomolecules
is lost during plunge-freezing has been unknown
until recently.
Current Opinion in Structural Biology 2024, 86:102825
The effect of cryogenic temperature on the structure
and dynamics of a protein embedded in a membrane was
explored with MD simulations by Mehra et al. [20].

Three sets of simulations were carried out: ‘hot’, ‘cold’
and ‘cooled’. The ‘hot’ and ‘cold’ simulations both
started from a cryo-EM structure and ran at the tem-
perature before and after cooling, respectively. The
‘cooled’ simulations started from conformations
observed in the ‘hot’ simulations with the ‘cold’ tem-
perature. This approach corresponds to instantaneous
cooling but does not simulate the actual cooling process.
The ensemble of ‘cooled’ structures best resembled the
cryo-EM structure, supporting the notion that many
conformations are trapped during cooling in the cryo-

EM experiment.

To quantify how much of the structure ensemble is
lost during rapid cooling, recently Bock et al. [21]
have combined continuum model calculations, MD
simulations, and kinetic modeling. The cooling rate
during plunge-freezing was estimated by solving the
heat equation of a solvent layer ‘sandwiched’ by two
liquid ethane layers, which suggested that tempera-
tures below 150 K are reached within several 100 ns,
depending on the thickness of the water film. First, an
ensemble of 41 structures of a bacterial ribosome was

generated using equilibrated MD simulation started
from a cryo-EM structure [22]. To simulate the actual
cooling process, MD simulation were started from
each of these structures during which the temperature
was decreased to cryogenic temperatures within 100
pse128 ns approaching realistic cooling rates. Using a
Bayesian approach, a kinetic model was identified
which best reproduced and predicted the structural
ensemble obtained from the 41 cooling
MD simulations.
www.sciencedirect.com

www.sciencedirect.com/science/journal/0959440X


Single-particle Cryo-EM and MD simulations Bock et al. 3
The results suggested significant narrowing of the
ensemble despite relatively fast cooling, and identified
mainly three causes: thermal contraction, reduced
thermal motion within local free-energy minima, and
equilibration into lower-free energy minima by over-
coming barriers separating these minima (Figure 1d).
This kinetic model suggested that free-energy barriers
below 10 kJ/mol are overcome during plunge-freezing

while larger barriers are not. This threshold would in-
crease (decrease) with slower (faster) cooling. Confor-
mational changes subject to barriers lower than the
threshold are expected to equilibrate into lower free-
energy minima, showing that cryo-EM data contains
kinetic information. This finding suggests how the
combination of cryo-EM cooling at different cooling
rates and MD simulations of the cooling process can be
used to extract kinetic information. It also suggests that
and how MD simulations can be used to ‘recalibrate’
cryo-EM ensembles to physiological temperatures. In

addition to energetic barriers, the ability of bio-
molecules to reach conformational states is affected by
the temperature-dependent diffusion coefficient which
can be extracted from MD simulations [23]. Especially
for large-scale motions with a flat free-energy surface the
diffusion coefficient is expected to affect the ensemble
observed by cryo-EM.

A different approach was recently used to probe the
thermodynamics of solvent molecules within or bound

to biological complexes. In particular, the recent dra-
matic resolution enhancements achieved by cryo-EM
[1,2] reaching resolutions below 3 Å allowed re-
searchers to visualize individual structural water mole-
cules [22,24]. This level of detail is particularly
interesting for studying the interactions between drugs
and their target biomolecules, which often is governed
by adjacent hydrogen-bonded water molecules. In high
resolution cryo-EM structures, in addition to direct
(drug-target) interactions, a plethora of such water-
mediated (drug-water-target) interactions were

observed [5].

The fact that these structures were obtained at cryo-
genic temperatures raises the question to what extent
the conformations of drug molecules and the positions
of water molecules are relevant at physiological tem-
peratures. To address these questions, MD simulations
at temperatures ranging between 90 K and 37 �C were
carried out [5]. The ensembles of water positions

together with a neural network that links the hydrogen-
bond occupancies with conformational deviations of the
antibiotic suggested that the waters that mediate
antibioticeribosome interactions are stable at physio-
logical temperatures and influence the conformation of
the antibiotic.
www.sciencedirect.com
Refining atomistic models into cryo-EM
maps
MD simulations are used to describe the dynamics of a
biomolecule as a set of conformational states, relative
probabilities of these states and rates of interconversion
among them. Yet, MD simulations heavily rely on high-
quality starting structures, i.e., estimated atom positions
and types. In contrast, cryo-EM provides a snapshot of
the electronic potential function of a biomolecule,
distorted by noise during the process of image collec-
tion. Although modern cryo-EM densities routinely
reach sub-nanometer resolution, deriving atomistic
structures from them is far from trivial. It is hence not

surprising that cryo-EM and MD simulations naturally
synergize: cryo-EM yields crucial structural data to
inspire and guide MD simulations, while MD simula-
tions profoundly enhance the interpretability of cryo-
EM data by augmenting it with information about ste-
reochemistry and non-covalent interactions.

The idea that a MD simulation can be exploited to
flexibly ‘steer’ a biomolecule to align it with a cryo-EM
density emerged long before near-atomistic re-
constructions became available [25e28,19]. However,

with the ever increasing resolution and spatial and
orientational resolution heterogeneity, these pioneering
methods faced the problem of getting trapped in
numerous local minima or structural distortions caused
by the strong bias needed to reach the desired structure-
map agreement. This limitation gave rise to new re-
quirements in computational structural biology that
MD-based refinement would need to fulfill, resolution-
independent density fitting, verifiable stereochemical
accuracy, and automation. As a result, several methods
have been developed [29e34], each targeting a specific

combination of the three requirements or all of them.

For example, Igaev et al. [31] have combined well-
established techniques such as real-space correlation-
based biasing potentials [28] and simulated annealing
[25] with a novel adaptive resolution and half-map-
based validation scheme, thereby overcoming the pre-
vious shortcomings in an automated fashion (Figure 2).
Notably, their method has a larger radius of convergence
(i.e., how different the starting structure can be from
the target state defined by the density) than conven-

tional non-MD techniques, while it does not rely on
additional restraints due to the use of a chemically ac-
curate force field and efficient thermodynamic sam-
pling. More recently, Blau et al. [34] have further
improved this approach by (i) using a new type of
refinement potential based on relative entropy, which is
smooth and almost parameter-free; and (ii) introducing
an adaptive bias scheme to balance between force-field
and density-based force, potentially reducing the need
Current Opinion in Structural Biology 2024, 86:102825
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Figure 2

Using correlation-based refinement in MD simulation to steer the atomic positions of a biomolecule such that they optimally fit a cryo-EM map. The
molecule is subjected to a global biasing potential in addition to the MD force field. The forces resulting from the force field act on every atom to enhance
the real-space correlation coefficient between the cryo-EM density (green) and the density calculated from the current atomic positions (blue).
Figure adapted from Igaev et al. [31].
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for cross-validation. Testing other, more physics-
informed similarity measures can further improve the

quality of the flexible fitting approach [35].

At the same time, regular community-wide competi-
tions objectively assess the effectiveness of a certain
method. Recently, the results of the 2019 Cryo-EM
Model Challenge have been presented [36] that spe-
cifically target the quality of optimized atomistic
models, the reproducibility of results, and the
Current Opinion in Structural Biology 2024, 86:102825
performance of various similarity measures. In a follow-
up competition, the reliability and reproducibility of

modeling ligands bound to protein and protein/nucle-
iceacid complexes have been tested [37]. Such events,
not only offer individual teams with opportunities to
test their methods in an unbiased fashion; more
importantly, they provide specific recommendations
about refining near-atomic cryo-EM structures which
are currently becoming gold standards for the whole
community [36,37].
www.sciencedirect.com
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Kinetics and thermodynamics from cryo-EM
data
The MD-based refinement approaches discussed above
aim to minimize the deviation between an experimental
cryo-EM map and a cryo-EM map predicted from a
single structural model. For 3D reconstructions, cryo-
EM images are usually first sorted into different
conformational states (classes), which then are refined
individually. This refinement against cryo-EM maps of
different conformational states along with the number
of particles in the cryo-EM images that are assigned to
the states provides a first description of the thermody-
namics of a biomolecular system [18,19]. In this section,

we discuss MD-based approaches to gain additional in-
formation of the structural ensembles either from 3D
cryo-EM map ordeven betterddirectly from the
2D images.

Towards this end, Bonomi et al. developed an integra-
tive modeling approach which uses multiple-replica MD
simulations to represent the ensemble of structures
[38,39]. In this Bayesian approach, the MD force field
was used as the structural prior information. The like-
lihood function is the probability of obtaining the 3D

cryo-EM map given the ensemble of structures from all
replicas. It is a particular advantage of the Bayesian
approach that experimental uncertainly and noise can be
included, e.g., in the cryo EM-maps, in a methodically
straightforward manner. By applying this approach,
structure and dynamics can be determined simulta-
neously and, importantly, the effects originating from
noise and structural heterogeneity can be disentangled.

By combining MD simulations and cryo-EM, Ode et al.
estimated the free-energy landscape of glutamate dehy-

drogenase [40]. To this end, 3D reconstructed maps were
obtained from the focused classification of the mobile
nucleotide binding domain. A principal component
analysis (PCA) of a 200-ns MD simulation was used to
produce a set of 28 conformations. Weights for these
conformations were chosen to minimize the deviation
between a linear combination of the maps generated from
these conformations and each cryo-EM map. These
weights were then combined with the relative number of
particles used to reconstruct each cryo-EM map to esti-
mate the free-energy landscape under the assumption

that the plunge-freezing does not affect the ensemble.

Włodarski et al. extended the Bayesian Inference Of En-
sembles (BioEn) method [41] to reweigh ensembles
generated by structure-based MD simulations utilizing
cryo-EMmaps [42].Theauthors applied theirmethodtoa
cryo-EM map of the ribosome-bound trigger factor (TF),
which showed that part of the density cannot be explained
byTFdynamics and instead can be linked to the presence
of a previously unaccounted protein.
www.sciencedirect.com
The EMMIVox method [43] uses Bayesian inference to
generate a hybrid energy function combining MD force
fields with restraints to fit cryo-EM maps. To balance
the stereochemical quality of the refined structures with
the fit to the data, the method entails pre-filtering of the
voxels to reduce correlations and thereby prevent over-
fitting to the data. Further, prior models for the uncer-
tainty in the data are obtained from independent

reconstructions (half maps). In addition to the inclusion
of B-factors, which represent thermal fluctuations and
static scattering of atoms around their mean positions,
considering multiple structures (ensemble) increases
the correlation with the cryo-EM maps. Further analysis
showed that the dynamics of 48% of the residues cannot
be described by the unimodal Gaussian distribution
underlying B-factors, further underscoring the need for
an ensemble description.

The most promisinge and most challenginge approach

to structure ensemble refinement is to directly use the
2D cryo-EM images. Its key advantage is that it avoids
the need to assign each 2D image to a particular
conformational state, which is error-prone. In fact, typi-
cally only a subset of images can actually be assigned
sufficiently reliably, and the information contained
within the many unused images is lost. The challenge of
this approach is the high computational cost of calcu-
lating likelihoods for large numbers of structural models
with unknown orientation and large numbers of
2D images.

To obtain free-energy landscapes of biomolecules, Dashti
et al. first sorted 2D images according to their projection
direction and then projected them onto a low dimen-
sional manifold identified using machine learning
[44,45]. After combining the projections from all di-
rections into a universal description, free-energy land-
scapes were determined from the densities via
Boltzmann inversion. For any point in the free-energy
landscape, a 3D map can be compiled from the corre-
sponding 2D images. In this way, the authors obtained
3D movies of conformational changes along low free-

energy paths of a non-translating ribosome [44]. More
recently, Dashti et al. extended this method and studied
the ryanodine receptor type 1 (RyR1) [45]. After
extracting free-energy surfaces of RyR1with and without
bound ligands, the authors used a master equation
approach andMDsimulations to obtain the probability of
transitioning between bound and unbound states.

Shifting the focus from structural ensembles to transi-
tion paths between members of such ensembles, Cryo-
BIFE, a method to estimate the free energy along a

path in conformation space from the 2D cryo-EM
images, was presented by Giraldo-Barreto et al. [46].
Besides providing additional mechanistic insights into
Current Opinion in Structural Biology 2024, 86:102825
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protein function, transition paths are a crucial input to
the method and can be obtained from MD simulations
connecting minimum free-energy conformations. A
Bayesian approach, where the likelihood is the proba-
bility of obtaining the set of 2D images for a given free-
energy profile along the path, is then used to obtain the
posterior probability of free-energy profiles.

Knowledge of transition states and the heights of the
associated energy barriers, which is needed to gain ki-
netic information of a biomolecular system, is difficult to
obtain, because these states are only rarely visited and
thus imaged. However, the posterior probability quan-
tifies the degree of certainty with which free-energy
profiles can be extracted from the experimental data,
allowing one to decide whether more data is required to
achieve the required accuracy. Building on this cryo-
BIFE approach, Tang et al. proposed a Bayesian
approach to reweigh a prior conformational ensemble

with 2D cryo-EM images [47]. For a multistate peptide,
the authors showed that their method is able to retrieve
an ensemble density from the synthetic cryo-EM images
generated from conformations of MD simulations.
Conclusion
Many biomolecules are highly dynamic and their func-
tions entail or are realized by conformational changes.
Understanding in atomistic detail how the motions of
biomolecules give rise to the function requires the full
structural ensemble at physiological temperatures,
which is much larger than the number of conformational
states typically resolved by cryo-EM. MD simulations
have the potential to produce these ensembles, but are
limited by the length and time scales that can be
reached with the available computational resources and
by the approximations in the description of the under-

lying physics, e.g., the force fields. In principle, cryo-EM
data contains information of the full structural
ensemble. Practically, access to the ensemble is limited
by the perturbation of the ensemble during the exper-
iment, e.g. by plunge-freezing. Another limitation is
caused by the limited number of images (particles) that
can be obtained. In particular, high free-energy confor-
mations, such as transition states, are crucial to under-
stand the kinetics. However, because of their low
occupancy they are only imaged sparsely, thereby
impeding 3D reconstruction.

In this review we provided examples of how these lim-
itations can be overcome to some extent by combining
cryo-EM data with MD simulations. At the same time,
we see many possibilities for further developing this
combination. During cryo-EM sample preparation, the
biomolecules tend to accumulate at the airewater
interface, causing problems such a preferential orienta-
tion of the particles and even denaturation of the bio-
molecules [48]. Studying these processes with MD
Current Opinion in Structural Biology 2024, 86:102825
simulations might help to find approaches that mitigate
or correct for these unwanted effects. Using non-
equilibrium time-resolved cryo-EM short-lived inter-
mediate states can be resolved by sufficiently reducing
the reaction time prior to plunge-freezing [18,49]. Cryo-
EM data from different time points after the start of a
reaction could be integrated with ensemble refinement
and kinetic models that describe the population of

states as a function of reaction time. Such an approach
has the intriguing potential to directly extract kinetic
information in addition to the structural information.
Most time-resolved cryo-EM approaches are limited by
the timescale of the plunge-freezing after the reaction is
initialized, currently reaching 6 ms [50]. However, a
recently introduced approach involves rapid melting of
the vitrified sample with a laser, reaching room tem-
perature. A reaction can be triggered by a second laser,
e.g., releasing a caged ATP molecule. After the heating
laser is turned off, the sample rapidly revitrifies and is

subsequently imaged [51,52]. The reachable time res-
olution of 5 ms matches the time scale of many confor-
mational changes [51]. MD simulations following the
experimental temperature profiles could be directly
compared to the cryo-EM results and thereby provide
atomistic ‘movies’ of the conformational changes
fundamentally advancing our understanding of biomol-
ecular dynamics.
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